NEET-XII-Physics
46: The Nucleus
Note: Please signup/signin free to get personalized experience.
Note: Please signup/signin free to get personalized experience.
10 minutes can boost your percentage by 10%
Note: Please signup/signin free to get personalized experience.
- Qstn #11A free neutron beta-decays to a proton with a half-life of 14 minutes. (a) What is the decay constant? (b) Find the energy liberated in the process.Ans : Given:
Half-life period of free neutron beta-decays to a proton, `` {T}_{1/2}`` = 14 minutes
Half-life period, T1/2 = `` \frac{0.6931}{\lambda }``
Here, `` \lambda `` = Decay constant
`` \therefore \lambda =\frac{0.693}{14\times 60}``
`` =8.25\times {10}^{-4}{\,\mathrm{\,s\,}}^{-1}``
If mp is the mass of proton, let mn and me be the mass of neutron and mass of electron, respectively.
`` \therefore \; Energ\,\mathrm{\,y\,}\,\mathrm{\,liberated\,},E=[{m}_{n}-\left({m}_{p}+{m}_{e}\right)]{c}^{2}``
`` =[1.008665\,\mathrm{\,u\,}-\left(1.007276+0.0005486\right)\,\mathrm{\,u\,}]{c}^{2}``
`` =0.0008404\times 931\,\mathrm{\,MeV\,}``
`` =782\,\mathrm{\,keV\,}``
`` ``
Page No 442:
- Qstn #12Complete the following decay schemes.Ans : `` \left(\,\mathrm{\,a\,}\right){}_{88}{}^{226}\,\mathrm{\,Ra\,}\to {}_{2}{}^{4}\,\mathrm{\,\alpha \,}+{}_{86}{}^{222}\,\mathrm{\,Rn\,}``
`` \left(\,\mathrm{\,b\,}\right){}_{8}{}^{19}\,\mathrm{\,O\,}\to {}_{9}{}^{19}\,\mathrm{\,F\,}+\stackrel{¯}{e}+\stackrel{¯}{v}``
`` \left(\,\mathrm{\,c\,}\right){}_{13}{}^{25}\,\mathrm{\,Ar\,}\to {}_{12}{}^{25}\,\mathrm{\,Mg\,}+{e}^{+}+v``
Page No 442:
- Qstn #13In the decay 64Cu → 64Ni + e+ + v, the maximum kinetic energy carried by the positron is found to be 0.650 MeV.Ans : Given:
Maximum kinetic energy of the positron, K = 0.650 MeV
- #13-aWhat is the energy of the neutrino which was emitted together with a positron of kinetic energy 0.150 MeV?Ans : Neutrino and positron are emitted simultaneously.
∴ Energy of neutrino = 0.650 - Kinetic energy of the given positron
= 0.650 - 0.150
= 0.5 MeV = 500 keV
- #13-bWhat is the momentum of this neutrino in kg m s-1?
Use the formula applicable to a photon.Ans : Momentum of the neutrino, `` P=\frac{E}{c}``
Here, E = Energy of neutrino
c = Speed of light
`` \Rightarrow P=\frac{500\times 1.6\times {10}^{-19}}{3\times {10}^{8}}\times {10}^{3}``
`` =2.67\times {10}^{-22}{\,\mathrm{\,Kgms\,}}^{-1}``
Page No 442:
- Qstn #14Potassium-40 can decay in three modes. It can decay by β--emission, B*-emission of electron capture.
- #14-aWrite the equations showing the end products.Ans : Decay of potassium-40 by β-emission is given by
`` {}_{19}\,\mathrm{\,K\,}^{40}{\to }_{20}{\,\mathrm{\,Ca\,}}^{40}+{\,\mathrm{\,\beta \,}}^{-}+\stackrel{¯}{\,\mathrm{\,v\,}}``
Decay of potassium-40 by β+ emission is given by
`` {}_{19}\,\mathrm{\,K\,}^{40}{\to }_{18}{\,\mathrm{\,Ar\,}}^{40}+{\,\mathrm{\,\beta \,}}^{+}+\,\mathrm{\,v\,}``
Decay of potassium-40 by electron capture is given by
`` {}_{19}\,\mathrm{\,K\,}^{40}+{\,\mathrm{\,e\,}}^{-}{\to }_{18}{\,\mathrm{\,Ar\,}}^{40}+\,\mathrm{\,v\,}``
- #14-bFind the Q-values in each of the three cases. Atomic masses of
Ar1840, K1940 and Ca2040are 39.9624 u, 39.9640 u and 39.9626 u respectively.Ans : Qvalue in the β- decay is given by
Qvalue = [m(19K40) - m(20Ca40)]c2
= [39.9640 u - 39.9626 u]c2
= 0.0014 `` \times `` 931 MeV
= 1.3034 MeV
Qvalue in the β+ decay is given by
Qvalue = [m(19K40) - m(20Ar40) - 2me]c2
= [39.9640 u - 39.9624 u - 0.0021944 u]c2
= (39.9640 - 39.9624) 931 MeV - 1022 keV
= 1489.96 keV - 1022 keV
= 0.4679 MeV
Qvalue in the electron capture is given by
Qvalue = [ m(19K40) - m(20Ar40)]c2
= (39.9640 - 39.9624)uc2
= 1.4890 = 1.49 MeV
Page No 442:
- Qstn #15Lithium (Z = 3) has two stable isotopes 6Li and 7Li. When neutrons are bombarded on lithium sample, electrons and α-particles are ejected. Write down the nuclear process taking place.Ans : The nuclear process taking place is shown below.
`` {}_{8}{}^{6}\,\mathrm{\,Li\,}+n\to {}_{3}{}^{7}\,\mathrm{\,Li\,}``
`` {}_{3}{}^{7}\,\mathrm{\,Li\,}+n\to {}_{3}{}^{8}\,\mathrm{\,Li\,}\to {}_{4}{}^{8}\,\mathrm{\,Be\,}+\stackrel{¯}{v}+{e}^{-}``
`` {}_{4}{}^{8}\,\mathrm{\,Be\,}\to {}_{2}{}^{4}\,\mathrm{\,He\,}+{}_{2}{}^{4}\,\mathrm{\,He\,}``
Page No 442:
- Qstn #16The masses of 11C and 11B are respectively 11.0114 u and 11.0093 u. Find the maximum energy a positron can have in the β*-decay of 11C to 11B.Ans : Given:
Mass of 11C, m(11C) = 11.0114 u
Mass of 11B, m(11B) = 11.0093 u
Energy liberated in the β+ decay (Q) is given by
`` Q=\left[m\left({}^{11}C\right)-m\left({}^{11}B\right)-2{m}_{e}\right]{c}^{2}``
= (11.0114 u - 11.0093 u `` -`` 2`` \times ``0.0005486 u)c2
= 0.0010028 `` \times `` 931 MeV
= 0.9336 MeV = 933.6 keV
For maximum KE of the positron, energy of neutrino can be taken as zero.
∴ Maximum KE of the positron = 933.6 keV
Page No 442:
- Qstn #17228Th emits an alpha particle to reduce to 224Ra. Calculate the kinetic energy of the alpha particle emitted in the following decay:
Th228→Ra224*+αRa224*→224Ra+Υ(217 keV).Atomic mass of 228Th is 228.028726 u, that of 224Ra is 224.020196 u and that of
H24is 4.00260 u.Ans : Given:
Atomic mass of 228Th, m(228Th) = 228.028726 u
Atomic mass of 224Ra, m(224Ra) = 224.020196 u
Atomic mass of `` {}_{2}{}^{4}\,\mathrm{\,H\,}``, m(`` {}_{2}{}^{4}\,\mathrm{\,H\,}``) = 4.00260 u
Mass of 224Ra = 224.020196 × 931 + 0.217 MeV = 208563.0195 MeV
Kinetic energy of alpha particle, K = `` \left[m\left({}^{228}\,\mathrm{\,Th\,}\right)-\left[m\left({}^{224}\,\mathrm{\,Ra\,}\right)+m\left({}_{2}{}^{4}\,\mathrm{\,H\,}\right)\right]\right]``c2
= (228.028726 × 931) - [(208563.0195 + 4.00260 × 931]
= 5.30383 MeV = 5.304 MeV
Page No 442:
- Qstn #18Calculate the maximum kinetic energy of the beta particle emitted in the following decay scheme:
12N → 12C* + e+ + v
12C* → 12C + γ (4.43MeV).
The atomic mass of 12N is 12.018613 u.Ans : Given:
Atomic mass of 12N, m(12N) = 12.018613 u
12N → 12C* + e+ + v
12C* → 12C + γ (4.43 MeV)
Net reaction is given by
12N → 12C + e+ + v + γ (4.43 MeV)
Qvalue of the `` {\beta }^{+}`` decay will be
Qvalue= [ m(12N) `` -`` (m(12C*) + 2me)]c2
= [12.018613 `` \times ``931 MeV `` -`` (12`` \times ``931 + 4.43) MeV `` -`` (2`` \times ``511) keV]
= [11189.3287 `` -`` 11176.43 `` -`` 1.022] MeV
= 11.8767 MeV = 11.88 MeV
The maximum kinetic energy of beta particle will be 11.88 MeV, assuming that neutrinos have zero energy.
Page No 442:
- Qstn #19The decay constant of
Hg80197(electron capture to
Au79197) is 1.8 × 10-4 S-1.Ans : Given:
Decay constant of `` {}_{80}{}^{197}\,\mathrm{\,Hg\,}``, `` \lambda `` = 1.8 × 10-4 s`` -1``
- #19-aWhat is the half-life?Ans : Half-life, `` {T}_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}=\frac{0.693}{\lambda }``
`` \Rightarrow {T}_{1/2}=\frac{0.693}{1.8\times {10}^{-4}}``
`` =3850\,\mathrm{\,s\,}=64\,\mathrm{\,minutes\,}``
`` ``
- #19-bWhat is the average-life?Ans : `` \,\mathrm{\,Average\,}\,\mathrm{\,life\,},{T}_{av}=\frac{{T}_{1/2}}{0.693}``
`` =\frac{64}{0.693}``
`` =92\,\mathrm{\,minutes\,}``
`` ``