NEET-XII-Physics
46: The Nucleus
- #19The decay constant of
Hg80197(electron capture to
Au79197) is 1.8 × 10-4 S-1. (a) What is the half-life? (b) What is the average-life? (c) How much time will it take to convert 25% of this isotope of mercury into gold? (a) What is the half-life? (b) What is the average-life? (c) How much time will it take to convert 25% of this isotope of mercury into gold?Ans : Given:
Decay constant of `` {}_{80}{}^{197}\,\mathrm{\,Hg\,}``, `` \lambda `` = 1.8 × 10-4 s`` -1`` (a) Half-life, `` {T}_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}=\frac{0.693}{\lambda }``
`` \Rightarrow {T}_{1/2}=\frac{0.693}{1.8\times {10}^{-4}}``
`` =3850\,\mathrm{\,s\,}=64\,\mathrm{\,minutes\,}``
`` `` (b) `` \,\mathrm{\,Average\,}\,\mathrm{\,life\,},{T}_{av}=\frac{{T}_{1/2}}{0.693}``
`` =\frac{64}{0.693}``
`` =92\,\mathrm{\,minutes\,}``
`` `` (c) Number of active nuclei of mercury at t = 0
= N0
= 100
Active nuclei of mercury left after conversion of 25% isotope of mercury into gold = N = 75
Now, `` \frac{N}{{N}_{0}}={e}^{-\lambda t}``
Here, N = Number of inactive nuclei
N0 = Number of nuclei at t = 0
`` \lambda `` = Disintegration constant
On substituting the values, we get
`` \frac{75}{100}={e}^{-\lambda t}``
`` \Rightarrow 0.75={\,\mathrm{\,e\,}}^{-\lambda x}``
`` \Rightarrow \,\mathrm{\,In\,}0.75=-\lambda t``
`` \Rightarrow t=\frac{\,\mathrm{\,In\,}0.75}{-0.00018}``
`` =1600\,\mathrm{\,s\,}``
Page No 443: (a) Half-life, `` {T}_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}=\frac{0.693}{\lambda }``
`` \Rightarrow {T}_{1/2}=\frac{0.693}{1.8\times {10}^{-4}}``
`` =3850\,\mathrm{\,s\,}=64\,\mathrm{\,minutes\,}``
`` `` (b) `` \,\mathrm{\,Average\,}\,\mathrm{\,life\,},{T}_{av}=\frac{{T}_{1/2}}{0.693}``
`` =\frac{64}{0.693}``
`` =92\,\mathrm{\,minutes\,}``
`` `` (c) Number of active nuclei of mercury at t = 0
= N0
= 100
Active nuclei of mercury left after conversion of 25% isotope of mercury into gold = N = 75
Now, `` \frac{N}{{N}_{0}}={e}^{-\lambda t}``
Here, N = Number of inactive nuclei
N0 = Number of nuclei at t = 0
`` \lambda `` = Disintegration constant
On substituting the values, we get
`` \frac{75}{100}={e}^{-\lambda t}``
`` \Rightarrow 0.75={\,\mathrm{\,e\,}}^{-\lambda x}``
`` \Rightarrow \,\mathrm{\,In\,}0.75=-\lambda t``
`` \Rightarrow t=\frac{\,\mathrm{\,In\,}0.75}{-0.00018}``
`` =1600\,\mathrm{\,s\,}``
Page No 443:
- #19-aWhat is the half-life?Ans : Half-life, `` {T}_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}=\frac{0.693}{\lambda }``
`` \Rightarrow {T}_{1/2}=\frac{0.693}{1.8\times {10}^{-4}}``
`` =3850\,\mathrm{\,s\,}=64\,\mathrm{\,minutes\,}``
`` ``
- #19-bWhat is the average-life?Ans : `` \,\mathrm{\,Average\,}\,\mathrm{\,life\,},{T}_{av}=\frac{{T}_{1/2}}{0.693}``
`` =\frac{64}{0.693}``
`` =92\,\mathrm{\,minutes\,}``
`` ``
- #19-cHow much time will it take to convert 25% of this isotope of mercury into gold?Ans : Number of active nuclei of mercury at t = 0
= N0
= 100
Active nuclei of mercury left after conversion of 25% isotope of mercury into gold = N = 75
Now, `` \frac{N}{{N}_{0}}={e}^{-\lambda t}``
Here, N = Number of inactive nuclei
N0 = Number of nuclei at t = 0
`` \lambda `` = Disintegration constant
On substituting the values, we get
`` \frac{75}{100}={e}^{-\lambda t}``
`` \Rightarrow 0.75={\,\mathrm{\,e\,}}^{-\lambda x}``
`` \Rightarrow \,\mathrm{\,In\,}0.75=-\lambda t``
`` \Rightarrow t=\frac{\,\mathrm{\,In\,}0.75}{-0.00018}``
`` =1600\,\mathrm{\,s\,}``
Page No 443: