NEET-XII-Physics

46: The Nucleus

with Solutions - page 5
Qstn# iv-11 Prvs-QstnNext-Qstn
  • #11
    A free neutron beta-decays to a proton with a half-life of 14 minutes. (a) What is the decay constant? (b) Find the energy liberated in the process.
    Ans : Given:
    Half-life period of free neutron beta-decays to a proton, `` {T}_{1/2}`` = 14 minutes
    Half-life period, T1/2 = `` \frac{0.6931}{\lambda }``
    Here, `` \lambda `` = Decay constant
    `` \therefore \lambda =\frac{0.693}{14\times 60}``
    `` =8.25\times {10}^{-4}{\,\mathrm{\,s\,}}^{-1}``
    If mp is the mass of proton, let mn and me be the mass of neutron and mass of electron, respectively.
    `` \therefore \; Energ\,\mathrm{\,y\,}\,\mathrm{\,liberated\,},E=[{m}_{n}-\left({m}_{p}+{m}_{e}\right)]{c}^{2}``
    `` =[1.008665\,\mathrm{\,u\,}-\left(1.007276+0.0005486\right)\,\mathrm{\,u\,}]{c}^{2}``
    `` =0.0008404\times 931\,\mathrm{\,MeV\,}``
    `` =782\,\mathrm{\,keV\,}``
    `` ``
    Page No 442: