NEET-XII-Physics
46: The Nucleus
Note: Please signup/signin free to get personalized experience.
Note: Please signup/signin free to get personalized experience.
10 minutes can boost your percentage by 10%
Note: Please signup/signin free to get personalized experience.
- #19-cHow much time will it take to convert 25% of this isotope of mercury into gold?Ans : Number of active nuclei of mercury at t = 0
= N0
= 100
Active nuclei of mercury left after conversion of 25% isotope of mercury into gold = N = 75
Now, `` \frac{N}{{N}_{0}}={e}^{-\lambda t}``
Here, N = Number of inactive nuclei
N0 = Number of nuclei at t = 0
`` \lambda `` = Disintegration constant
On substituting the values, we get
`` \frac{75}{100}={e}^{-\lambda t}``
`` \Rightarrow 0.75={\,\mathrm{\,e\,}}^{-\lambda x}``
`` \Rightarrow \,\mathrm{\,In\,}0.75=-\lambda t``
`` \Rightarrow t=\frac{\,\mathrm{\,In\,}0.75}{-0.00018}``
`` =1600\,\mathrm{\,s\,}``
Page No 443:
- Qstn #20The half-life of 199Au is 2.7 days. (a) Find the activity of a sample containing 1.00 µg of 198Au. (b) What will be the activity after 7 days? Take the atomic weight of 198Au to be 198 g mol-1.digAnsr: bAns : Given:
Half-life of 199Au, T1/2= 2.7 days
Disintegration constant, `` \lambda =\frac{0.693}{{T}_{{\displaystyle 1/2}}}`` = `` \frac{0.693}{2.7\times 24\times 60\times 60}=2.97\times {10}^{-6}{\,\mathrm{\,s\,}}^{-1}``
Number of atoms left undecayed, N = `` \frac{1\times {10}^{-6}\times 6.023\times {10}^{23}}{198}``
Now, activity, `` {A}_{0}=\lambda N``
= `` \frac{1\times {10}^{-6}\times 6.023\times {10}^{23}}{198}\times 2.97\times {10}^{-6}``
= 0.244 Ci
(b) After 7 days,
Activity, `` A={A}_{0}{e}^{-\lambda t}``
`` ``
Here, A0 = 0.244 Ci
`` \therefore A=0.244\times {e}^{-2.97\times {10}^{-6}\times 7\times 3600\times 24}``
`` =0.244\times {e}^{17962.56\times {10}^{-4}}``
`` =0.040\,\mathrm{\,Ci\,}``
Page No 443:
- Qstn #21Radioactive 131I has a half-life of 8.0 days. A sample containing 131I has activity 20 µCi at t = 0.Ans : Given:
Half-life of radioactive 131I, T1/2 = 8 days
Activity of the sample at t = 0, A0 = 20 µCi
Time, t = 4 days
- #21-aWhat is its activity at t = 4 days?Ans : Disintegration constant, `` \lambda =\frac{0.693}{{T}_{1/2}}=0.0866``
Activity (A) at t = 4 days is given by
`` A={A}_{0}{e}^{-\lambda t}``
`` \Rightarrow A=20\times {10}^{-6}\times {e}^{-0.0866\times 4}``
`` =1.41\times {10}^{-6}\,\mathrm{\,Ci\,}=14\,\mathrm{\,\mu Ci\,}``
- #21-bWhat is its decay constant at t = 4.0 days?Ans : Decay constant is a constant for a radioactive sample and depends only on its half-life.
`` \lambda =\frac{0.693}{[8\times 24\times 3600]}``
`` =1.0026\times {10}^{-6}{\,\mathrm{\,s\,}}^{-1}``
Page No 443:
- Qstn #22The decay constant of 238U is 4.9 × 10-18 S-1.Ans : Given:
Decay constant, `` \lambda `` = 4.9 × 10-18 s-1
- #22-aWhat is the average-life of 238U?Ans : Average life of uranium `` \left(\tau \right)`` is given by
`` \tau =\frac{1}{\lambda }``
`` =\frac{1}{4.9\times {10}^{-18}}``
`` =\frac{1}{4.9}\times {10}^{18}\,\mathrm{\,s\,}``
`` =\frac{{10}^{16}}{4.9\times 365\times 24\times 36}\,\mathrm{\,years\,}``
`` =\frac{{10}^{16}}{4.9\times 365\times 24\times 36}\,\mathrm{\,years\,}``
`` =6.47\times {10}^{-7}\times {10}^{16}\,\mathrm{\,years\,}``
`` =6.47\times {10}^{9}\,\mathrm{\,years\,}``
- #22-bWhat is the half-life of 238U?Ans : Half-life of uranium `` \left({T}_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\right)`` is given by
`` {T}_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}=\frac{0.693}{\lambda }=\frac{0.693}{4.9\times {10}^{-18}}``
`` =\frac{0.693}{4.9}\times {10}^{18}\,\mathrm{\,s\,}``
`` =0.1414\times {10}^{18}\,\mathrm{\,s\,}``
`` =\frac{0.1414\times {10}^{18}}{365\times 24\times 3600}``
`` =\frac{1414\times {10}^{12}}{365\times 24\times 36}``
`` =4.48\times {10}^{-3}\times {10}^{12}``
`` =4.5\times {10}^{9}\,\mathrm{\,years\,}``
`` ``
- #22-cBy what factor does the activity of a 238U sample decrease in 9 × 109 years?Ans : Time, t = 9 × 109 years
Activity (A) of the sample, at any time t, is given by
`` A=\frac{{A}_{0}}{{\displaystyle {2}^{\frac{t}{{T}_{1/2}}}}}``
`` ``
Here, A0 = Activity of the sample at t = 0
`` \therefore \frac{{A}_{0}}{A}={2}^{\frac{9\times {10}^{9}}{4.5\times {10}^{9}}}={2}^{2}=4``
Page No 443:
- Qstn #23A certain sample of a radioactive material decays at the rate of 500 per second at a certain time. The count rate falls to 200 per second after 50 minutes.Ans : Given:
Initial rate of decay, A0 = 500,
Rate of decay after 50 minutes, A = 200
Time, t = 50 min
= 50 `` \times `` 60
= 3000 s
- #23-aWhat is the decay constant of the sample?Ans : Activity, A = A0e-λt
Here, `` \lambda `` = Disintegration constant
`` \therefore `` 200 = 500 × e-50×60×λ
`` \Rightarrow \frac{2}{5}={e}^{-3000\lambda }``
`` \Rightarrow \,\mathrm{\,In\,}\frac{2}{5}=-3000\lambda ``
`` \Rightarrow \lambda =3.05\times {10}^{-4}{\,\mathrm{\,s\,}}^{-1}``
`` ``
- #23-bWhat is its half-life?Ans : `` \,\mathrm{\,Half\,}-\,\mathrm{\,life\,},{T}_{1/2}=\frac{0.693}{\lambda }``
`` =2272.13\,\mathrm{\,s\,}``
`` =38\,\mathrm{\,min\,}``
Page No 443:
- Qstn #24The count rate from a radioactive sample falls from 4.0 × 106 per second to 1.0 × 106 per second in 20 hours. What will be the count rate 100 hours after the beginning?Ans : Given:
Initial count rate of radioactive sample, A0 = 4 × 106 disintegration/sec
Count rate of radioactive sample after 20 hours, A = 1 × 106 disintegration/sec
Time, t = 20 hours
Activity of radioactive sample `` \left(A\right)`` is given by
`` A=\frac{{A}_{0}}{{2}^{{\displaystyle \frac{t}{{\displaystyle \raisebox{1ex}{$T$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}}}}``
`` \,\mathrm{\,Here\,},{T}_{1/2}=\,\mathrm{\,Half\,}-\,\mathrm{\,life\,}\,\mathrm{\,period\,}``
`` \,\mathrm{\,On\,}\,\mathrm{\,substituting\,}\,\mathrm{\,the\,}\,\mathrm{\,values\,}\,\mathrm{\,of\,}{A}_{0}\,\mathrm{\,and\,}A,\,\mathrm{\,we\,}\,\mathrm{\,have\,}``
`` {2}^{\frac{t}{{\displaystyle \raisebox{1ex}{$T$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}}={2}^{2}``
`` \Rightarrow \frac{t}{{\displaystyle \raisebox{1ex}{$T$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}=2``
`` \Rightarrow \raisebox{1ex}{$T$}\!\left/ \!\raisebox{-1ex}{$2$}\right.=t/2=20\,\mathrm{\,h\,}/2=10\,\mathrm{\,h\,}``
`` ``
100 hours after the beginning,
`` \,\mathrm{\,Count\,}\,\mathrm{\,rate\,},A"=\frac{{A}_{0}}{{2}^{{\displaystyle \frac{t}{{\displaystyle \raisebox{1ex}{$T$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}}}}``
`` \Rightarrow A"=\frac{4\times {10}^{6}}{{2}^{100/10}}``
`` =0.390625\times {10}^{4}``
`` =3.9\times {10}^{3}\,\mathrm{\,disintegrations\,}/\,\mathrm{\,sec\,}``
Page No 443:
- Qstn #25The half-life of 226Ra is 1602 y. Calculate the activity of 0.1 g of RaCl2 in which all the radium is in the form of 226Ra. Taken atomic weight of Ra to be 226 g mol-1 and that of Cl to be 35.5 g mol-1.Ans : Given:
Half-life of radium, T1/2 = 1602 years
Atomic weight of radium = 226 g/mole
Atomic weight of chlorine = 35.5 g/mole
Now,
1 mole of RaCl2 = 226 + 71 = 297 g
297 g = 1 mole of RaCl2
0.1 g = `` \frac{1}{297}\times 0.1\,\mathrm{\,mole\,}\,\mathrm{\,of\,}{\,\mathrm{\,RaCl\,}}_{2}``
Total number of atoms in 0.1 g of RaCl2, N `` =\frac{0.1\times 6.023\times {10}^{23}}{297}=0.02027\times {10}^{22}``
`` ``
∴ No of atoms, N = 0.02027 `` \times `` 1022
`` \,\mathrm{\,Disintegration\,}\,\mathrm{\,constant\,},\lambda =\frac{0.693}{{T}_{{\displaystyle \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}}``
`` =\frac{0.693}{1602\times 365\times 24\times 3600}``
`` =1.371\times {10}^{-11}``
Activity of radioactive sample, A = `` \lambda N``
= `` 1.371\times {10}^{-11}\times 2.027\times {10}^{20}``
= `` 2.8\times {10}^{9}\,\mathrm{\,disintegrations\,}/\,\mathrm{\,second\,}``
Page No 443:
- Qstn #26The half-life of a radioisotope is 10 h. Find the total number of disintegration in the tenth hour measured from a time when the activity was 1 Ci.Ans : Given:
Half-life of radioisotope, `` {T}_{1/2}`` = 10 hrs
Initial activity, A0 = 1 Ci
Disintegration constant, `` \lambda =\frac{0.693}{10\times 3600}{\,\mathrm{\,s\,}}^{-1}``
Activity of radioactive sample, `` A={A}_{0}{e}^{-\lambda t}``
`` ``</math><br><math xmlns="http://www.w3.org/1998/Math/MathML"></math><br><math xmlns="http://www.w3.org/1998/Math/MathML">
Page No 443: