NEET-XII-Physics

17: Light Waves

with Solutions - page 7
Qstn# iv-32 Prvs-QstnNext-Qstn
  • #32
    The line-width of a bright fringe is sometimes defined as the separation between the points on the two sides of the central line where the intensity falls to half the maximum. Find the line-width of a bright fringe in a Young’s double slit experiment in terms of
    λ, d and D where the symbols have their usual meanings.
    Ans : Given:
    Separation between two slits = d
    Wavelength of the light = `` \lambda ``
    `` ``
    Distance of the screen = `` D``
    Let Imax be the maximum intensity and I be half the maximum intensity at a point at a distance y from the central point.
    So, `` I={a}^{2}+{a}^{2}+2{a}^{2}\,\mathrm{\,cos\,}\varphi ``
    Here, `` \varphi `` is the phase difference in the waves coming from the two slits.
    So, `` I=4{a}^{2}{\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)``
    `` \Rightarrow \frac{I}{{I}_{\,\mathrm{\,max\,}}}=\frac{1}{2}``
    `` \Rightarrow \frac{4{a}^{2}{\,\mathrm{\,cos\,}}^{2}\left({\displaystyle \frac{\varphi }{2}}\right)}{4{a}^{2}}=\frac{1}{2}``
    `` \Rightarrow {\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)=\frac{1}{2}``
    `` \Rightarrow \,\mathrm{\,cos\,}\left(\frac{\varphi }{2}\right)=\frac{1}{\sqrt{2}}``
    `` \Rightarrow \frac{\,\mathrm{\,\varphi \,}}{2}=\frac{\,\mathrm{\,\pi \,}}{4}``
    `` \Rightarrow \varphi =\frac{\,\mathrm{\,\pi \,}}{2}``
    `` \,\mathrm{\,Corrosponding\,}\,\mathrm{\,path\,}\,\mathrm{\,difference\,},∆x=\frac{1}{4}``
    `` \Rightarrow y=\frac{∆xD}{d}=\frac{\lambda D}{4d}``
    The line-width of a bright fringe is defined as the separation between the points on the two sides of the central line where the intensity falls to half the maximum.
    So, line-width = 2y
    `` =2\frac{D\lambda }{4d}=\frac{D\lambda }{2d}``
    Thus, the required line width of the bright fringe is `` \frac{D\lambda }{2d}``.
    Page No 383: