NEET-XII-Physics

17: Light Waves

with Solutions - page 7
Qstn# iv-31 Prvs-QstnNext-Qstn
  • #31
    In a Young’s double slit experiment,
    λ=500 nm, d=1·0 mm and D=1·0 m. Find the minimum distance from the central maximum for which the intensity is half of the maximum intensity.
    Ans : Given:
    Separation between the two slits, `` d=1\,\mathrm{\,mm\,}={10}^{-3}\,\mathrm{\,m\,}``
    `` ``
    Wavelength of the light, `` \lambda =500\,\mathrm{\,nm\,}=5\times {10}^{-7}\,\mathrm{\,m\,}``
    `` ``
    Distance of the screen, `` D=1\,\mathrm{\,m\,}``
    `` ``
    Let Imax be the maximum intensity and I be the intensity at the required point at a distance y from the central point.
    So, `` I={a}^{2}+{a}^{2}+2{a}^{2}\,\mathrm{\,cos\,}\varphi ``
    Here, `` \varphi `` is the phase difference in the waves coming from the two slits.
    So, `` I=4{a}^{2}{\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)``
    `` \Rightarrow \frac{I}{{I}_{\,\mathrm{\,max\,}}}=\frac{1}{2}``
    `` \Rightarrow \frac{4{a}^{2}{\,\mathrm{\,cos\,}}^{2}\left({\displaystyle \frac{\varphi }{2}}\right)}{4{a}^{2}}=\frac{1}{2}``
    `` \Rightarrow {\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)=\frac{1}{2}``
    `` \Rightarrow \,\mathrm{\,cos\,}\left(\frac{\varphi }{2}\right)=\frac{1}{\sqrt{2}}``
    `` \Rightarrow \frac{\,\mathrm{\,\varphi \,}}{2}=\frac{\,\mathrm{\,\pi \,}}{4}``
    `` \Rightarrow \varphi =\frac{\,\mathrm{\,\pi \,}}{2}``
    `` \,\mathrm{\,Corrosponding\,}\,\mathrm{\,path\,}\,\mathrm{\,difference\,},∆x=\frac{1}{4}``
    `` \Rightarrow y=\frac{∆xD}{d}=\frac{\lambda D}{4d}``
    `` \Rightarrow y=\frac{5\times {10}^{-7}\times 1}{4\times {10}^{-3}}``
    `` =1.25\times {10}^{-4}\,\mathrm{\,m\,}``
    ∴ The required minimum distance from the central maximum is `` 1.25\times {10}^{-4}\,\mathrm{\,m\,}``.
    Page No 382: