NEET-XII-Physics
17: Light Waves
- #30-ahalf the maximum, (b) one-fourth the maximum.Ans : When the intensity is half the maximum:
Let Imax be the maximum intensity and I be the intensity at the required point at a distance y from the central point.
So, `` I={a}^{2}+{a}^{2}+2{a}^{2}\,\mathrm{\,cos\,}\varphi ``
Here, `` \varphi `` is the phase difference in the waves coming from the two slits.
So, `` I=4{a}^{2}{\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)``
`` \Rightarrow \frac{I}{{I}_{\,\mathrm{\,max\,}}}=\frac{1}{2}``
`` \Rightarrow \frac{4{a}^{2}{\,\mathrm{\,cos\,}}^{2}\left({\displaystyle \frac{\varphi }{2}}\right)}{4{a}^{2}}=\frac{1}{2}``
`` \Rightarrow {\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)=\frac{1}{2}``
`` \Rightarrow \,\mathrm{\,cos\,}\left(\frac{\varphi }{2}\right)=\frac{1}{\sqrt{2}}``
`` \Rightarrow \frac{\,\mathrm{\,\varphi \,}}{2}=\frac{\,\mathrm{\,\pi \,}}{4}``
`` \Rightarrow \varphi =\frac{\,\mathrm{\,\pi \,}}{2}``
`` \,\mathrm{\,Corrosponding\,}\,\mathrm{\,path\,}\,\mathrm{\,difference\,},∆x=\frac{\lambda }{4}``
`` \Rightarrow y=\frac{∆xD}{d}=\frac{\lambda D}{4d}`` (b) When the intensity is one-fourth of the maximum:
`` \frac{I}{{I}_{\,\mathrm{\,max\,}}}=\frac{1}{4}``
`` \Rightarrow 4{a}^{2}{\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)=\frac{1}{4}``
`` \Rightarrow {\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)=\frac{1}{4}``
`` \Rightarrow \,\mathrm{\,cos\,}\left(\frac{\varphi }{2}\right)=\frac{1}{2}``
`` \Rightarrow \frac{\varphi }{2}=\frac{\pi }{3}``
`` \,\mathrm{\,So\,},\,\mathrm{\,corrosponding\,}\,\mathrm{\,path\,}\,\mathrm{\,difference\,},∆x=\frac{\lambda }{3}``
`` \,\mathrm{\,and\,}\,\mathrm{\,position\,},y=\frac{∆xD}{d}=\frac{\lambda D}{3d}.``
Page No 382:
- #30-bone-fourth the maximum.Ans : When the intensity is one-fourth of the maximum:
`` \frac{I}{{I}_{\,\mathrm{\,max\,}}}=\frac{1}{4}``
`` \Rightarrow 4{a}^{2}{\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)=\frac{1}{4}``
`` \Rightarrow {\,\mathrm{\,cos\,}}^{2}\left(\frac{\varphi }{2}\right)=\frac{1}{4}``
`` \Rightarrow \,\mathrm{\,cos\,}\left(\frac{\varphi }{2}\right)=\frac{1}{2}``
`` \Rightarrow \frac{\varphi }{2}=\frac{\pi }{3}``
`` \,\mathrm{\,So\,},\,\mathrm{\,corrosponding\,}\,\mathrm{\,path\,}\,\mathrm{\,difference\,},∆x=\frac{\lambda }{3}``
`` \,\mathrm{\,and\,}\,\mathrm{\,position\,},y=\frac{∆xD}{d}=\frac{\lambda D}{3d}.``
Page No 382: