NEET-XII-Physics

11: Gravitation

with Solutions - page 4
Qstn# iv-4 Prvs-QstnNext-Qstn
  • #4
    Three uniform spheres each having a mass M and radius a are kept in such a way that each touches the other two. Find the magnitude of the gravitational force on any of the spheres due to the other two.
    Ans : Three spheres are placed with their centres at A, B and C as shown in the figure.

    Gravitational force on sphere C due to sphere B is given by
    `` {\stackrel{\to }{\,\mathrm{\,F\,}}}_{\,\mathrm{\,CB\,}}=\frac{\,\mathrm{\,G\,}{m}^{2}}{4{a}^{2}}\,\mathrm{\,cos\,}60°\stackrel{‸}{i}+\frac{\,\mathrm{\,G\,}{m}^{2}}{4{a}^{2}}·\,\mathrm{\,sin\,}60°\stackrel{‸}{j}``
    Gravitational force on sphere C due to sphere A is given by
    `` {\stackrel{\to }{\,\mathrm{\,F\,}}}_{\,\mathrm{\,CA\,}}=-\frac{\,\mathrm{\,G\,}{m}^{2}}{4{a}^{2}}\,\mathrm{\,cos\,}60°\stackrel{‸}{i}+\frac{\,\mathrm{\,G\,}{m}^{2}}{4{a}^{2}}·\,\mathrm{\,sin\,}60°\stackrel{‸}{j}``
    `` \therefore {\stackrel{\to }{\,\mathrm{\,F\,}}}_{\,\mathrm{\,CB\,}}={\stackrel{\to }{\,\mathrm{\,F\,}}}_{\,\mathrm{\,CB\,}}+{\stackrel{\to }{\,\mathrm{\,F\,}}}_{\,\mathrm{\,CA\,}}``
    `` =+\frac{2\,\mathrm{\,G\,}{m}^{2}}{4{a}^{2}}\,\mathrm{\,sin\,}60°\stackrel{‸}{j}``
    `` =+\frac{2\,\mathrm{\,G\,}{m}^{2}}{4{a}^{2}}\times \frac{\sqrt{3}}{2}``
    i.e., magnitude`` =\frac{\sqrt{3}\,\mathrm{\,G\,}{m}^{2}}{4{a}^{2}}`` along CO
    Page No 226: