NEET-XII-Physics

11: Gravitation

with Solutions - page 4
Qstn# iv-5 Prvs-QstnNext-Qstn
  • #5
    Four particles of equal masses M move along a circle of radius R under the action of their mutual gravitational attraction. Find the speed of each particle.
    Ans : Assume that three particles are at points A, B and C on the circumference of a circle.
    BC = CD = `` \sqrt{2}a``

    The force on the particle at C due to gravitational attraction of the particle at B is `` {\stackrel{\to }{F}}_{\,\mathrm{\,CB\,}}=\frac{\,\mathrm{\,G\,}{M}^{2}}{2{\,\mathrm{\,R\,}}^{2}}\stackrel{‸}{j}``.
    The force on the particle at C due to gravitational attraction of the particle at D is `` {\stackrel{\to }{F}}_{\,\mathrm{\,CD\,}}=-\frac{G{M}^{2}}{2{\,\mathrm{\,R\,}}^{2}}\stackrel{‸}{i}``.
    Now, force on the particle at C due to gravitational attraction of the particle at A is given by
    `` {\stackrel{\to }{F}}_{\,\mathrm{\,CA\,}}=-\frac{\,\mathrm{\,G\,}{M}^{2}}{4{R}^{2}}\,\mathrm{\,cos\,}45\stackrel{‸}{i}+\frac{\,\mathrm{\,G\,}{M}^{2}}{4{R}^{2}}\,\mathrm{\,sin\,}45\stackrel{‸}{j}``
    `` \therefore {\stackrel{\to }{F}}_{\,\mathrm{\,C\,}}={\stackrel{\to }{F}}_{\,\mathrm{\,CA\,}}+{\stackrel{\mathit{\to }}{F}}_{\,\mathrm{\,CB\,}}+{\stackrel{\mathit{\to }}{F}}_{\,\mathrm{\,CD\,}}``
    `` =\frac{-\,\mathrm{\,G\,}{M}^{2}}{4{R}^{2}}\left(2+\frac{1}{\sqrt{2}}\right)\stackrel{‸}{i}+\frac{\,\mathrm{\,G\,}{M}^{2}}{4{R}^{2}}\left(2+\frac{1}{\sqrt{2}}\right)\stackrel{‸}{j}``
    So, the resultant gravitational force on C is `` {\,\mathrm{\,F\,}}_{\,\mathrm{\,C\,}}=\frac{\,\mathrm{\,G\,}{m}^{2}}{4{\,\mathrm{\,R\,}}^{2}}\sqrt{2\sqrt{2}+1}``.
    Let v be the velocity with which the particle is moving.
    Centripetal force on the particle is given by
    `` F=\frac{m{v}^{2}}{R}``
    `` \Rightarrow v\mathit{=}\sqrt{\frac{\mathit{G}\mathit{M}}{\mathit{R}}\left(\frac{\mathit{2}\sqrt{\mathit{2}}\mathit{+}\mathit{1}}{\mathit{4}}\right)}``
    Page No 226: