NEET-XII-Physics

11: Gravitation

with Solutions - page 4
Qstn# iv-3 Prvs-QstnNext-Qstn
  • #3
    Three equal masses m are placed at the three corners of an equilateral triangle of side a. Find the force exerted by this system on another particle of mass m placed at (a) the mid-point of a side, (b) at the centre of the triangle. (a) the mid-point of a side, (b) at the centre of the triangle.
    Ans : (a) Consider that mass 'm' is placed at the midpoint O of side AB of equilateral triangle ABC.

    AO = BO = `` \frac{a}{2}``
    Then `` {\stackrel{\to }{F}}_{\,\mathrm{\,OA\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{{a}^{2}}`` along OA
    Also, `` {\stackrel{\to }{F}}_{\,\mathrm{\,OB\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{{a}^{2}}`` along OB
    OC = `` \frac{\sqrt{3}a}{2}``
    `` {\stackrel{\to }{F}}_{\,\mathrm{\,OC\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{\left\{\left(3\right){a}^{2}\right\}}=\frac{4G{m}^{2}}{3{a}^{2}}`` along OC
    The net force on the particle at O is `` \stackrel{\to }{F}={\stackrel{\to }{F}}_{\,\mathrm{\,OA\,}}+{\stackrel{\to }{F}}_{\,\mathrm{\,OB\,}}+{\stackrel{\to }{F}}_{\,\mathrm{\,OC\,}}``.
    Since equal and opposite forces cancel each other, we have:
    `` \stackrel{\to }{F}={\stackrel{\to }{F}}_{\,\mathrm{\,OC\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{\left\{\left(3\right){a}^{2}\right\}}=\frac{4G{m}^{2}}{3{a}^{2}}`` along OC. (b) If the particle placed at O (centroid)

    All the forces are equal in magnitude but their directions are different as shown in the figure.
    Equal and opposite forces along OM and ON cancel each other.
    i.e., `` F\,\mathrm{\,cos\,}30°=F\,\mathrm{\,cos\,}30°``
    ∴ Resultant force `` =F-2F\,\mathrm{\,sin\,}30=0``
    Page No 226: (a) Consider that mass 'm' is placed at the midpoint O of side AB of equilateral triangle ABC.

    AO = BO = `` \frac{a}{2}``
    Then `` {\stackrel{\to }{F}}_{\,\mathrm{\,OA\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{{a}^{2}}`` along OA
    Also, `` {\stackrel{\to }{F}}_{\,\mathrm{\,OB\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{{a}^{2}}`` along OB
    OC = `` \frac{\sqrt{3}a}{2}``
    `` {\stackrel{\to }{F}}_{\,\mathrm{\,OC\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{\left\{\left(3\right){a}^{2}\right\}}=\frac{4G{m}^{2}}{3{a}^{2}}`` along OC
    The net force on the particle at O is `` \stackrel{\to }{F}={\stackrel{\to }{F}}_{\,\mathrm{\,OA\,}}+{\stackrel{\to }{F}}_{\,\mathrm{\,OB\,}}+{\stackrel{\to }{F}}_{\,\mathrm{\,OC\,}}``.
    Since equal and opposite forces cancel each other, we have:
    `` \stackrel{\to }{F}={\stackrel{\to }{F}}_{\,\mathrm{\,OC\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{\left\{\left(3\right){a}^{2}\right\}}=\frac{4G{m}^{2}}{3{a}^{2}}`` along OC. (b) If the particle placed at O (centroid)

    All the forces are equal in magnitude but their directions are different as shown in the figure.
    Equal and opposite forces along OM and ON cancel each other.
    i.e., `` F\,\mathrm{\,cos\,}30°=F\,\mathrm{\,cos\,}30°``
    ∴ Resultant force `` =F-2F\,\mathrm{\,sin\,}30=0``
    Page No 226:
  • #3-a
    the mid-point of a side,
    Ans : Consider that mass 'm' is placed at the midpoint O of side AB of equilateral triangle ABC.

    AO = BO = `` \frac{a}{2}``
    Then `` {\stackrel{\to }{F}}_{\,\mathrm{\,OA\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{{a}^{2}}`` along OA
    Also, `` {\stackrel{\to }{F}}_{\,\mathrm{\,OB\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{{a}^{2}}`` along OB
    OC = `` \frac{\sqrt{3}a}{2}``
    `` {\stackrel{\to }{F}}_{\,\mathrm{\,OC\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{\left\{\left(3\right){a}^{2}\right\}}=\frac{4G{m}^{2}}{3{a}^{2}}`` along OC
    The net force on the particle at O is `` \stackrel{\to }{F}={\stackrel{\to }{F}}_{\,\mathrm{\,OA\,}}+{\stackrel{\to }{F}}_{\,\mathrm{\,OB\,}}+{\stackrel{\to }{F}}_{\,\mathrm{\,OC\,}}``.
    Since equal and opposite forces cancel each other, we have:
    `` \stackrel{\to }{F}={\stackrel{\to }{F}}_{\,\mathrm{\,OC\,}}=\frac{4\,\mathrm{\,G\,}{m}^{2}}{\left\{\left(3\right){a}^{2}\right\}}=\frac{4G{m}^{2}}{3{a}^{2}}`` along OC.
  • #3-b
    at the centre of the triangle.
    Ans : If the particle placed at O (centroid)

    All the forces are equal in magnitude but their directions are different as shown in the figure.
    Equal and opposite forces along OM and ON cancel each other.
    i.e., `` F\,\mathrm{\,cos\,}30°=F\,\mathrm{\,cos\,}30°``
    ∴ Resultant force `` =F-2F\,\mathrm{\,sin\,}30=0``
    Page No 226: