NEET-XII-Physics
46: The Nucleus
Note: Please signup/signin free to get personalized experience.
Note: Please signup/signin free to get personalized experience.
10 minutes can boost your percentage by 10%
Note: Please signup/signin free to get personalized experience.
- Qstn #9Two lithium nuclei in a lithium vapour at room temperature do not combine to form a carbon nucleus because
(a) a lithium nucleus is more tightly bound than a carbon nucleus
(b) carbon nucleus is an unstable particle
(c) it is not energetically favourable
(d) Coulomb repulsion does not allow the nuclei to come very close.digAnsr: dAns : (d) Coulomb repulsion does not allow the nuclei to come very close.
Lithium atom contains 3 protons and 3 neutrons in the nucleus and 3 valence electrons. When two lithium nuclei are brought together, they repel each other. The attractive nuclear forces being short-range are insignificant as compared to the electrostatic repulsion. Thus, the nuclei do not combine to form carbon atom because of coulomb repulsion.
Page No 442:
- Qstn #10For nuclei with A > 100,
(a) the binding energy of the nucleus decreases on an average as A increases
(b) the binding energy per nucleon decreases on an average as A increases
(c) if the nucleus breaks into two roughly equal parts, energy is released
(d) if two nuclei fuse to form a bigger nucleus, energy is released.digAnsr: b,c,AAns : (b) the binding energy per nucleon decreases on an average as A increases
(c) if the nucleus breaks into two roughly equal parts, energy is released
Binding energy per nucleon varies in a way that it depends on the actual value of mass number (A). As the mass number (A) increases, the binding energy also increases and reaches its maximum value of 8.7 MeV for A (50-80) and for A > 100. The binding energy per nucleon decreases as A increases and the nucleus breaks into two or more atoms of roughly equal parts so as to attain stability and binding energy of mass number between 50-80.
Page No 442:
- #Section : iv
- Qstn #1Assume that the mass of a nucleus is approximately given by M = Amp where A is the mass number. Estimate the density of matter in kgm-3 inside a nucleus. What is the specific gravity of nuclear matter?Ans : Given:
Mass of the nucleus, M = Amp
Volume of the nucleus, V = `` \frac{4}{3}\pi {{R}_{0}}^{3}A``
Density of the matter, `` d=\frac{M}{V}=\frac{A{m}_{p}}{{\displaystyle \frac{4}{3}}\pi {{R}_{0}}^{3}A}``
`` =\frac{3{m}_{p}}{4\times \pi {{R}_{0}}^{3}}``
`` =\frac{3\times 1.007276}{4\times 3.14(1.1{)}^{3}}``
`` =3\times {10}^{17}\,\mathrm{\,kg\,}/{\,\mathrm{\,m\,}}^{3}``
Specific gravity of the nuclear matter = `` \frac{\,\mathrm{\,Density\,}\,\mathrm{\,of\,}\,\mathrm{\,matter\,}}{\,\mathrm{\,Density\,}\,\mathrm{\,of\,}\,\mathrm{\,water\,}}``
`` \therefore `` Specific gravity = `` \frac{3\times {10}^{17}}{{10}^{3}}`` = 3 `` \times `` 1014 kg/m3
Page No 442:
- Qstn #2A neutron star has a density equal to that of the nuclear matter. Assuming the star to be spherical, find the radius of a neutron star whose mass is 4.0 × 1030 kg (twice the mass of the sun).Ans : Given:
Mass of the neutron star, M = 4.0 × 1030 kg
Density of nucleus, d = 2.4`` \times ``1017`` {}^{}``
Density of nucleus, `` d=\frac{M}{V}``
Here, V is the volume of the nucleus.
`` \therefore V=\frac{M}{d}=\frac{4\times {10}^{30}}{2.4\times {10}^{17}}``
`` =\frac{1}{0.6}\times {10}^{13}``
`` =\frac{1}{6}\times {10}^{14}``
`` ``
If R is the radius, then the volume of the neutron star is given by
`` V=\frac{4}{3}\pi {R}^{3}``
`` \therefore \frac{1}{6}\times {10}^{14}=\frac{4}{3}\times \,\mathrm{\,\pi \,}\times {R}^{3}``
`` \Rightarrow {R}^{3}=\frac{1}{6}\times \frac{3}{4}\times \frac{1}{\,\mathrm{\,\pi \,}}\times {10}^{14}``
`` \Rightarrow {R}^{3}=\frac{1}{8}\times \frac{100}{\,\mathrm{\,\pi \,}}\times {10}^{12}``
`` \therefore R=\frac{1}{2}\times {10}^{4}\times 3.17``
`` =1.585\times {10}^{4}=15\,\mathrm{\,km\,}``
Page No 442:
- Qstn #3Calculate the mass of an α-particle. Its Its binding energy is 28.2 MeV.Ans : Given:
Binding energy of α particle = 28.2 MeV
Let x be the mass of α particle.
We know an α particle consists of 2 protons and 2 neutrons.
Binding energy, `` B=\left(Z{m}_{p}+N{m}_{n}-M\right){c}^{2}``
`` ``
Here, mp = Mass of proton
mn = Mass of neutron
Z= Number of protons
N = Number of neutrons
c = Speed of light
On substituting the respective values, we have
`` 28.2=(2\times 1.007276+2\times 1.008665-x){c}^{2}``
`` \Rightarrow x=4.0016\,\mathrm{\,u\,}``
Page No 442:
- Qstn #4How much energy is released in the following reaction:
7Li + p → α + α.
Atomic mass of 7Li = 7.0160 u and that of 4He = 4.0026 u.Ans : Given:
Mass of 7Li = 7.0160 u
Mass of 4He = 4.0026 u.
Reaction:
`` \,\mathrm{\,L\,}{i}^{7}+p\mathit{\to }\alpha \mathit{+}\alpha \mathit{+}E\mathit{,}``
`` ``
`` ``
Energy release `` \left(E\right)`` is given by
`` E=\left[m\left({}^{7}\,\mathrm{\,Li\,}\right)+\left({m}_{p}\right)-2\times m\left({}^{4}\,\mathrm{\,He\,}\right)\right]{c}^{2}``
`` =\left[\left(7.0160\,\mathrm{\,u\,}+1.007276\,\mathrm{\,u\,}\right)-2\left(4.0026\,\mathrm{\,u\,}\right)\right]{c}^{2}``
`` =(8.023273\,\mathrm{\,u\,}-8.0052\,\mathrm{\,u\,}){\,\mathrm{\,c\,}}^{2}``
`` =0.018076\times 931\,\mathrm{\,MeV\,}``
`` =16.83\,\mathrm{\,MeV\,}``
Page No 442:
- Qstn #5Find the binding energy per nucleon of
79197Au if its atomic mass is 196.96 u.Ans : Given:
Atomic mass of Au, A = 196.96
Atomic number of Au, Z = 79
Number of neutrons, N = 118
Binding energy, `` B=(\,\mathrm{\,Z\,}{m}_{p}+N{m}_{n}-M){c}^{2}``
`` ``
`` ``
Here, mp = Mass of proton
M = Mass of nucleus
mn = Mass of neutron
c = Speed of light
On substituting the respective values, we get
`` B=\left[\right(79\times 1.007276+118\times 1.008665)\,\mathrm{\,u\,}-196.96\,\mathrm{\,u\,}]{c}^{2}``
`` =\left(198.597274-196.96\right)\times 931\,\mathrm{\,MeV\,}``
`` =1524.302094\,\mathrm{\,MeV\,}``
Binding energy per nucleon `` =\frac{1524.3}{197}=7.737\,\mathrm{\,MeV\,}``
Page No 442:
- #6
- #6-aCalculate the energy released if 238U emits an α-particle.Ans : Given:
Atomic mass of 238U, m(238U) = 238.0508 u
Atomic mass of 234Th, m(234Th) = 234.04363 u
Atomic mass of 4He, m(4He) = 4.00260 u
When 238U emits an α-particle, the reaction is given by
`` {\,\mathrm{\,U\,}}^{238}\to {\,\mathrm{\,Th\,}}^{234}+{\,\mathrm{\,He\,}}^{4}``
Mass defect, Δm = [m(238U)`` -``(m(234Th)+m(4He))]
Δm = [238.0508 `` -`` (234.04363 + 4.00260) = 0.00457 u
Energy released (E) when 238U emits an α-particle is given by
`` E=∆m{c}^{2}``
`` E=[0.00457\,\mathrm{\,u\,}]\times 931.5\,\mathrm{\,MeV\,}``
`` \Rightarrow E=4.25467\,\mathrm{\,MeV\,}=4.255\,\mathrm{\,MeV\,}``
`` ``
- #6-bCalculate the energy to be supplied to 238U it two protons and two neutrons are to be emitted one by one. The atomic masses of 238U, 234Th and 4He are 238.0508 u, 234.04363 u and 4.00260 u respectively.Ans : When two protons and two neutrons are emitted one by one, the reaction will be
`` {\,\mathrm{\,U\,}}^{233}\to {\,\mathrm{\,Th\,}}^{234}+2n+2p``
`` \,\mathrm{\,Mass\,}\,\mathrm{\,defect\,},∆m=m\left({\,\mathrm{\,U\,}}^{238}\right)-[m\left({\,\mathrm{\,Th\,}}^{234}\right)+2\left({m}_{\,\mathrm{\,n\,}}\right)+2\left({m}_{p}\right)]``
`` ∆m=238.0508\,\mathrm{\,u\,}-[234.04363\,\mathrm{\,u\,}+2(1.008665)\,\mathrm{\,u\,}+2(1.007276)\,\mathrm{\,u\,}]``
`` ∆m=0.024712\,\mathrm{\,u\,}``
Energy released (E) when 238U emits two protons and two neutrons is given by
`` E=∆m{c}^{2}``
`` E=0.024712\times 931.5\,\mathrm{\,MeV\,}``
`` E=23.019=23.02\,\mathrm{\,MeV\,}``
Page No 442:
- Qstn #7Find the energy liberated in the reaction
223Ra → 209Pb + 14C.
The atomic masses needed are as follows.
223Ra 209Pb 14C
22..018 u 208.981 u 14.003 uAns : Given:
Atomic mass of 223Ra, m(223Ra) = 223.018 u
Atomic mass of 209Pb, m(209Pb) = 208.981 u
Atomic mass of 14C, m(14C) = 14.003 u
Reaction:
`` {}^{223}\,\mathrm{\,Ra\,}{\to }^{209}\,\mathrm{\,Pb\,}+{}^{14}\,\mathrm{\,C\,}``
`` ``
`` \,\mathrm{\,Energy\,},E=\left[m\left({}^{223}Ra\right)-\left(m\left({}^{209}Pb\right)+m\left({}^{14}\,\mathrm{\,C\,}\right)\right)\right]{c}^{2}``
`` =\left[223.018\,\mathrm{\,u\,}-\left(208.981+14.003\right)\,\mathrm{\,u\,}\right]{c}^{2}``
`` =0.034\times 931\,\mathrm{\,MeV\,}``
`` =31.65\,\mathrm{\,MeV\,}``
Page No 442:
- Qstn #8Show that the minimum energy needed to separate a proton from a nucleus with Z protons and N neutrons is
∆E=(MZ-1,N+MB-MZ,N)c2where MZ,N = mass of an atom with Z protons and N neutrons in the nucleus and MB = mass of a hydrogen atom. This energy is known as proton-separation energy.Ans : Given:
Mass of an atom with Z protons and N neutrons = MZ,N
Mass of hydrogen atom = MH
As hydrogen contains only protons, the reaction will be given by
`` {E}_{Z\mathit{,}N}\to {E}_{\,\mathrm{\,Z\,}-1,N}+{p}_{1}``
`` \Rightarrow {E}_{Z\mathit{,}N}\to {E}_{z-1,N}{+}^{1}{\,\mathrm{\,H\,}}_{1}``
∴ Minimum energy needed to separate a proton, `` ∆E=({M}_{\,\mathrm{\,Z\,}-1,\,\mathrm{\,N\,}}+{M}_{\,\mathrm{\,H\,}}-{M}_{\,\mathrm{\,Z\,},\,\mathrm{\,N\,}}){c}^{2}``
Page No 442:
- Qstn #9Calculate the minimum energy needed to separate a neutron from a nucleus with Z protons and N neutrons it terms of the masses MZ.N‘ MZ,N-1 and the mass of the neutron.Ans : Before the separation of neutron, let the mass of the nucleus be MZ,N.
Then, after the separation of neutron, the mass of the nucleus will be MZ,N-1.
The reaction is given by
`` {E}_{Z\mathit{,}N}={E}_{Z,N-1}+{}_{0}{}^{1}\,\mathrm{\,n\,}``
If `` {M}_{\,\mathrm{\,N\,}}`` is the mass of the neutron, then the energy needed to separate the neutron b`` \left(∆E\right)`` will be
`` ∆E`` = (Final mass of nucleus + Mass of neutron - Initial mass of the nucleus)c2
`` ∆E=({M}_{Z,\,\mathrm{\,N\,}-1}+{M}_{\,\mathrm{\,N\,}}-{M}_{Z,\,\mathrm{\,N\,}}){c}^{2}``
Page No 442:
- Qstn #1032P beta-decays to 32S. Find the sum of the energy of the antineutrino and the kinetic energy of the β-particle. Neglect the recoil of the daughter nucleus. Atomic mass of 32P = 31.974 u and that of 32S = 31.972 u.Ans : Given:
Atomic mass of 32P, m(32P) = 31.974 u
Atomic mass of 32S, m(32S) = 31.972 u
Reaction:
`` {\,\mathrm{\,P\,}}^{32}\to {\,\mathrm{\,S\,}}^{32}{+}_{1}{\,\mathrm{\,v\,}}^{0}{+}_{-1}{\,\mathrm{\,\beta \,}}^{0}``
Energy of antineutrino and β-particle, E = [m(32P)`` -``m(32S)]c2
= (31.974 u- 31.972 u)c2
= 0.002 × 931 = 1.862 MeV
Page No 442: