NEET-XII-Physics

43: Bohr's Model and Physics of the Atom

with Solutions - page 4
Qstn# iv-9 Prvs-QstnNext-Qstn
  • #9
    A group of hydrogen atoms are prepared in n = 4 states. List the wavelength that are emitted as the atoms make transitions and return to n = 2 states.
    Ans : There will be three wavelengths.
    (i) For the transition from (n = 4) to (n = 3) state
    (ii) For the transition from (n = 3) to (n = 2) state
    (iii) For the transition from (n = 4) to (n = 2) state
    Let (`` \lambda ``1) be the wavelength when the atom makes transition from (n = 4) state to (n = 2) state.​
    Here,
    n1 = 2
    n2 = 4
    Now, the wavelength (`` \lambda ``1)​ will be
    `` \frac{1}{{\lambda }_{1}}=R\left(\frac{1}{{{n}_{1}}^{2}}-\frac{1}{{{n}_{2}}^{2}}\right)``
    `` ``
    `` ``
    `` R=1.097\times {10}^{7}{\,\mathrm{\,m\,}}^{-1}``
    `` ``
    `` \frac{1}{{\lambda }_{1}}=1.097\times {10}^{7}\times \left(\frac{1}{4}-\frac{1}{16}\right)``
    `` \Rightarrow \frac{1}{{\lambda }_{1}}=1.097\times {10}^{7}\left(\frac{4-1}{16}\right)``
    `` \Rightarrow \frac{1}{{\lambda }_{1}}=\frac{1.097\times {10}^{7}\times 3}{16}``
    `` \Rightarrow {\lambda }_{1}=\frac{16\times {10}^{-7}}{3\times 1.097}``
    `` =4.8617\times {10}^{-7}``
    `` =486.1\times {10}^{-9}``
    `` =487\,\mathrm{\,nm\,}``
    When an atom makes transition from (n = 4) to (n = 3), the wavelength (`` \lambda ``2) is given by
    `` \,\mathrm{\,Here\,}\,\mathrm{\,again\,},``
    `` {n}_{1}=3``
    `` {n}_{2}=4``
    `` \frac{1}{{\lambda }_{2}}=1.097\times {10}^{7}\left(\frac{1}{9}-\frac{1}{16}\right)``
    `` \Rightarrow \frac{1}{{\lambda }_{2}}=1.097\times {10}^{7}\left(\frac{16-9}{144}\right)``
    `` \Rightarrow \frac{1}{{\lambda }_{2}}=\frac{1.097\times {10}^{7}\times 7}{144}``
    `` \Rightarrow {\lambda }_{2}=\frac{144}{1.097\times {10}^{7}\times 7}``
    `` =1875\,\mathrm{\,nm\,}``
    Similarly, wavelength (`` \lambda ``3) for the transition from (n = 3) to (n = 2) is given by
    When the transition is n1 = 2 to n2 = 3:
    `` \frac{1}{{\lambda }_{3}}=1.097\times {10}^{7}\left(\frac{1}{4}-\frac{1}{9}\right)``
    `` \Rightarrow \frac{1}{{\lambda }_{3}}=1.097\times {10}^{7}\left(\frac{9-4}{36}\right)``
    `` \Rightarrow \frac{1}{{\lambda }_{3}}=\frac{1.097\times {10}^{7}\times 5}{36}``
    `` \Rightarrow {\lambda }_{3}=\frac{36\times {10}^{-7}}{1.097\times 5}=656\,\mathrm{\,nm\,}``
    Page No 384: