NEET-XII-Physics

43: Bohr's Model and Physics of the Atom

with Solutions - page 4
Qstn# iv-10 Prvs-QstnNext-Qstn
  • #10
    A positive ion having just one electron ejects it if a photon of wavelength 228 Å or less is absorbed by it. Identify the ion.
    Ans : Given:
    Wavelength of photon, λ = 228 Å
    Energy `` \left(E\right)`` is given by
    `` E=\frac{h\,\mathrm{\,c\,}}{\lambda }``
    `` ``
    Here, c = Speed of light
    h = Planck's constant
    `` \therefore E=\frac{\left(6.63\times {10}^{-34}\right)\times \left(3\times {10}^{8}\right)}{\left(228\times {10}^{-10}\right)}``
    `` =0.0872\times {10}^{-16}\,\mathrm{\,J\,}``
    As the transition takes place from n = 1 to n = 2, the excitation energy (E1) will be
    `` {E}_{1}=Rh\,\mathrm{\,c\,}{Z}^{2}\left(\frac{1}{{{n}_{1}}^{2}}-\frac{1}{{{n}_{2}}^{2}}\right)``
    `` {E}_{1}=\left(13.6\,\mathrm{\,eV\,}\right)\times {Z}^{2}\times \left(\frac{1}{{1}^{2}}-\frac{1}{{2}^{2}}\right)``
    `` \Rightarrow {E}_{1}=\left(13.6\,\mathrm{\,eV\,}\right)\times {Z}^{2}\times \frac{3}{4}``
    This excitation energy should be equal to the energy of the photon.
    `` \therefore 13.6\times \frac{3}{4}\times {\,\mathrm{\,Z\,}}^{2}=0.0872\times {10}^{-16}``
    `` {Z}^{2}=\frac{0.0872\times {10}^{-16}\times 4}{13.6\times 3\times 1.6\times {10}^{-19}}=5.34``
    `` Z=\sqrt{5.34}=2.3``
    The ion may be helium.
    Page No 384: