ICSE-VIII-Mathematics

17: Special Types of Quadrilaterals Class 8 Maths

with Solutions -
  • #8
    PQRS is a parallelogram whose diagonals intersect at M.
    If ∠PMS = 54°, ∠QSR = 25° and ∠SQR = 30° ; find : (i) ∠RPS (ii) ∠PRS (iii) ∠PSR.
    Ans : Given : ||gm PQRS in which diagonals PR & QS intersect at M.
    ∠PMS = 54° ; ∠QSR = 25° and ∠SQR = 30°

    To find : (i) ∠RPS (ii) ∠PRS (iii) ∠PSR
    Proof : QR || PS
    ⇒ ∠PSQ = ∠SQR (Alternate ∠s)
    But ∠SQR = 30° (Given)
    ∠PSQ = 30°
    In ∆SMP,
    ∠PMS + ∠PSM + ∠MPS = 180° or 54° + 30° + ∠RPS = 180°
    ⇒ ∠RPS = 180°- 84° = 96°
    Now ∠PRS + ∠RSQ = ∠PMS
    ∠PRS + 25° = 54°
    ⇒ ∠PRS = 54° - 25° = 29°
    ⇒ ∠PSR = ∠PSQ + ∠RSQ = 30° + 25° = 55°
    Hence (i) ∠RPS = 96° (ii) ∠PRS = 29° (iii) ∠PSR = 55°