ICSE-VIII-Mathematics
17: Special Types of Quadrilaterals Class 8 Maths
- #6ABCD is a rhombus. If ∠BAC = 38°, find : (i) ∠ACB (ii) ∠DAC (iii) ∠ADC.
Ans : ABCD is Rhombus (Given)
AB = BC
∠BAC = ∠ACB (∠s opp. to equal sides)
But ∠BAC = 38° (Given)
∠ACB = 38°
In ∆ABC,
∠ABC + ∠BAC + ∠ACB = 180°
⇒ ∠ABC + 38° + 38° = 180°
⇒ ∠ABC = 180° - 76° = 104°
But ∠ABC = ∠ADC (opp. ∠s of rhombus)
∠ADC = 104°
⇒ ∠DAC = ∠DCA ( AD = CD)
⇒ ∠DAC = 1/2 [180° - 104°]
⇒ ∠DAC = 1/2 x 76° = 38°
Hence (i) ∠ACB = 38° (ii) ∠DAC = 38° (iii) ∠ADC = 104°