CBSE-XI-Physics

02: Physics and Mathematics

with Solutions - page 2
  • #3
    Let the angle between two nonzero vectors
    A→and B→be 120° and its resultant be
    C→.
    -(a) C must be equal to
    A-B
    (b) C must be less than
    A-B
    (c)
    C must be greater than
    A-B
    (d) C may be equal to
    A-B
    digAnsr:   c
    Ans : (b) C must be less than `` \left|A-B\right|``
    Here, we have three vector A, B and C.
    `` {\left|\stackrel{\to }{A}+\stackrel{\to }{B}\right|}^{2}={\left|\stackrel{\to }{A}\right|}^{2}+{\left|\stackrel{\to }{B}\right|}^{2}+2\stackrel{\to }{A}.\stackrel{\to }{B}...\left(i\right)
    {\left|\stackrel{\to }{A}-\stackrel{\to }{B}\right|}^{2}={\left|\stackrel{\to }{A}\right|}^{2}+{\left|\stackrel{\to }{B}\right|}^{2}-2\stackrel{\to }{A}.\stackrel{\to }{B}...\left(ii\right)``
    Subtracting (i) from (ii), we get:
    `` {\left|\stackrel{\to }{A}+\stackrel{\to }{B}\right|}^{2}-{\left|\stackrel{\to }{A}-\stackrel{\to }{B}\right|}^{2}=4\stackrel{\to }{A}.\stackrel{\to }{B}``
    Using the resultant property `` \stackrel{\to }{C}=\stackrel{\to }{A}+\stackrel{\to }{B}``, we get:
    `` {\left|\stackrel{\to }{C}\right|}^{2}-{\left|\stackrel{\to }{A}-\stackrel{\to }{B}\right|}^{2}=4\stackrel{\to }{A}.\stackrel{\to }{B}
    \Rightarrow {\left|\stackrel{\to }{C}\right|}^{2}={\left|\stackrel{\to }{A}-\stackrel{\to }{B}\right|}^{2}+4\stackrel{\to }{A}.\stackrel{\to }{B}
    \Rightarrow {\left|\stackrel{\to }{C}\right|}^{2}={\left|\stackrel{\to }{A}-\stackrel{\to }{B}\right|}^{2}+4\left|\stackrel{\to }{A}\right|\left|\stackrel{\to }{B}\right|\mathrm{cos}120°``
    Since cosine is negative in the second quadrant, `` C``must be less than `` \left|A-B\right|``.


    Page No 28: