ICSE-X-Mathematics

Previous Year Paper year:2018

with Solutions - page 2
 
  • #2-c [4]

    PQRS is a cyclic quadrilateral. Given ∠QPS = 73°, ∠PQS = 55° and ∠PSR = 82°,
    calculate:

    Ans :

    Join PR

  • #2-c-i
    ∠QRS
    Ans : ``\angle SPQ + \angle QRS = 180° ``
    '
    ``\Rightarrow \angle QRS = 180° - 73° = 107°`` (opposite angles of a cyclic quadrilateral)
  • #2-c-ii
    ∠RQS
    Ans : ``\angle PSR + \angle PQR = 180°``
    ``\Rightarrow 82°+55°+\angle SQR = 180°``
    ``\Rightarrow \angle SQR = 180° -82°-55° = 43°``
  • #2-c-iii

    ∠PRQ

    Ans :

    ``\angle PSR = 55° = \angle PQS ``(angles in the same segment)
    ``\therefore \angle SRQ = 180° - 73° = 107°``
    ``\angle PRQ = 105° - 55° = 52° ``

  • #3
  • #3-a [3]
    If (x + 2) and (x + 3) are factors of ``x^3 + ax + b``, find the values of 'a' and `b'.
    Ans : ``f(x) = x^3+ax+b``
    Factors: x+2 = 0 ``\Rightarrow x = -2``
    x+3 = 0 ``\Rightarrow x = -3``
    ``f(-2) = (-2)^3+a(-2)+b =0``
    ``\Rightarrow 2a-b = -8`` . . . . . (i)
    ``f(-3) = (-3)^3+a(-3)+b =0``
    ``\Rightarrow -3a+b = 27 `` . . . . . (ii)
    Solving (i) and (ii)
    ``2a-b=-8 \\ \underline{-3a+b=27} \\ -a \ \ \ \ \ \ \ = 19``
    ``\Rightarrow a = -19``
    Substituting in (ii)
    2(-19)-b = -8
    ``\Rightarrow b = -30``
  • #3-b [3]
    Prove that
    $$ \sqrt{\sec^2\theta + cosec^2\theta} = \tan\theta + \cot\theta $$
    Ans : ``\sqrt{sec^2 \theta + csec^2 \theta} = tan \ \theta + cot \ \theta``
    ``LHS = \sqrt{sec^2 \theta + csec^2 \theta}``
    ``= \sqrt{1+tan^2 \theta + 1 + cot^2 \theta}``
    ``= \sqrt{2+tan^2 \theta + cot^2 \theta}``
    ``= \sqrt{2 tan \ \theta cot \ \theta+tan^2 \theta + cot^2 \theta}``
    ``=\sqrt{(tan \ \theta + cot \ \theta)^2}``
    ``= tan \ \theta + cot \ \theta``
    = RHS . Hence proved.
  • #3-c [4]
    Using a graph paper draw a histogram for the given distribution showing the
    number of runs scored by 50 batsmen. Estimate the mode of the data:
    Runs scored 3000-4000 4000-5000 5000-6000 6000-7000 7000-8000 8000-9000 9000-10000
    No. of batsmen 4 18 9 6 7 2 4
    Ans : '
    Mode = 4600
  • #4
    Ans : Answers:
  • #4-a [3]
    Solve the following inequation, write down the solution set and represent it on the
    real number line:
    ``-2 + 10x \le 13x +10 \lt 24 +10x`` , ``x \, \epsilon \, Z``
    Ans : ``-2+10x \leq 13x + 10 \leq 24 + 10x, x \in Z``
    First equation: ``-2+10x \leq 13x + 10``
    ``\Rightarrow -12 \leq 3x``
    ``\Rightarrow -4 \leq x``
    Second equation: ``13x + 10 \leq 24 + 10x``
    ``\Rightarrow 3x < 14``
    ``\Rightarrow x < \frac{14}{3} ``
    ``\therefore -4 \leq x < \frac{14}{3} ``
    Hence the solution set ``= \{x \in Z: -4, -3, -2, -1, 0, 1, 2, 3, 4 \}``
  • #4-b [3]
    If the straight lines ``3x - 5y = 7 ``and ``4x + ay + 9 = 0`` are perpendicular to one another,
    find the value of a.
    Ans : Two equations are:
    ``3x-5y=7 \Rightarrow y = \frac{3}{5} x - \frac{7}{5} \Rightarrow m_1 = \frac{3}{5}``
    ``4x+ay+9=0 \Rightarrow y = \frac{-4}{a} x - \frac{1}{a} \Rightarrow m_2 = \frac{-4}{a}``
    Since the two lines are perpendicular to each other
    ``m_1 \times m_2 = -1\frac{3}{5} \times \frac{-4}{a} = -1 \Rightarrow a = \frac{12}{5}``
  • #4-c [4]
    Solve ``x^2 + 7x = 7`` and give your answer correct to two decimal places.
    Ans : ``x^2+7x=7``
    ``x^2+7x-7=0``
    ``\Rightarrow a = 1, b = 7, c = -7``
    ``x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}``
    ``= \frac{-7 \pm \sqrt{7^2+4.1.17}}{2.1}``
    ``= \frac{-7 \pm \sqrt{77}}{2}``
    ``= \frac{-7 \pm 8.77}{2}``
    Therefore ``x = \frac{-7 + 8.77}{2.1}, \frac{-7 - 8.77}{2}``
    or ``x = 0.885 \approx 0.89, -7.885 \approx 7.89``
  • # [40]
    Section : B
    Attempt any four questions from this Section
  • #5
  • #5-a [3]
    The 4th term of a G.P. is 16 and the 7th term is 128. Find the first term and common ratio of the series.
    Ans : ``4^{th} \ term = 16, \ 7^{th} \ term = 128``
    ``T_n = ar^{n-1}``
    Therefore ``T_4: 16 = ar^3 \Rightarrow \frac{16}{a} =r^3``
    ``T_7: 128 = ar^6``
    ``\Rightarrow 128 = a(r^3)^2``
    ``\Rightarrow 128 = a. (\frac{16}{a})^2``
    ``\Rightarrow 128 = a . \frac{16^2}{a^2} ``
    ``\Rightarrow a = \frac{256}{128} = 2``
    Therefore ``r^3 = \frac{16}{2} = 8 \Rightarrow r = 2``