NEET-XII-Physics

14: Some Mechanical Properties of Matter

with Solutions - page 5
Qstn# iv-4 Prvs-QstnNext-Qstn
  • #4
    A steel wire and a copper wire of equal length and equal cross-sectional area are joined end to end and the combination is subjected to a tension. Find the ratio of
    Ans : Given:
    Young's modulus of steel = 2 × 1011 N m-2
    Young's modulus of copper = 1.3 × 10 11 N m-2
    Both wires are of equal length and equal cross-sectional area. Also, equal tension is applied on them.
    As per the question:
    `` {L}_{\,\mathrm{\,steel\,}}={L}_{\,\mathrm{\,Cu\,}}``
    `` {A}_{\,\mathrm{\,steel\,}}={A}_{\,\mathrm{\,Cu\,}}``
    `` {F}_{\,\mathrm{\,Cu\,}}={F}_{\,\mathrm{\,Steel\,}}``
    `` ``
    Here: Lsteel and LCu denote the lengths of steel and copper wires, respectively.
    Asteel and ACu denote the cross-sectional areas of steel and copper wires, respectively.
    Fsteel and FCu denote the tension of steel and cooper wires, respectively.
    `` \left(\,\mathrm{\,a\,}\right)\frac{\,\mathrm{\,Stress\,}\,\mathrm{\,of\,}\,\mathrm{\,Cu\,}}{\,\mathrm{\,Stress\,}\,\mathrm{\,of\,}\,\mathrm{\,Steel\,}}=\frac{{F}_{\,\mathrm{\,Cu\,}}}{{A}_{\,\mathrm{\,Cu\,}}}\frac{{A}_{\,\mathrm{\,Steel\,}}}{{F}_{\,\mathrm{\,Steel\,}}}=1``
    (b)
    `` \frac{\,\mathrm{\,Strain\,}\,\mathrm{\,of\,}\,\mathrm{\,Cu\,}}{\,\mathrm{\,Strain\,}\,\mathrm{\,of\,}\,\mathrm{\,steel\,}}=\frac{{\displaystyle \frac{∆{L}_{\,\mathrm{\,Steel\,}}}{{L}_{\,\mathrm{\,Steel\,}}}}}{{\displaystyle \frac{∆{L}_{\,\mathrm{\,cu\,}}}{{L}_{\,\mathrm{\,cu\,}}}}}=\frac{{F}_{\,\mathrm{\,Steel\,}}{L}_{\,\mathrm{\,Steel\,}}{A}_{cu}{Y}_{cu}}{{A}_{\,\mathrm{\,Steel\,}}{Y}_{\,\mathrm{\,Steel\,}}{F}_{cu}{L}_{cu}}``
    `` \left(\,\mathrm{\,Using\,}\frac{∆L}{L}=\frac{F}{AY}\right)``
    `` \Rightarrow \frac{\,\mathrm{\,Strain\,}\,\mathrm{\,of\,}\,\mathrm{\,Cu\,}}{\,\mathrm{\,Strain\,}\,\mathrm{\,of\,}\,\mathrm{\,steel\,}}=\frac{{\,\mathrm{\,Y\,}}_{\,\mathrm{\,cu\,}}}{{\,\mathrm{\,Y\,}}_{\,\mathrm{\,Steel\,}}}=\frac{1.3\times {10}^{11}}{2\times {10}^{11}}``
    `` \Rightarrow \frac{\,\mathrm{\,Strain\,}\,\mathrm{\,of\,}\,\mathrm{\,C\,}\,\mathrm{\,u\,}}{\,\mathrm{\,Strain\,}\,\mathrm{\,of\,}\,\mathrm{\,steel\,}}=\frac{13}{20}``
    `` \Rightarrow \frac{\,\mathrm{\,Strain\,}\,\mathrm{\,of\,}\,\mathrm{\,steel\,}}{\,\mathrm{\,Strain\,}\,\mathrm{\,of\,}\,\mathrm{\,Cu\,}}=\frac{20}{13}``
    Hence, the required ratio is 20 : 13.
    Page No 300: