NEET-XII-Physics

12: Simple Harmonic Motion

with Solutions - page 2
Qstn# ii-7 Prvs-QstnNext-Qstn
  • #7
    The motion of a particle is given by x = A sin ωt + B cos ωt. The motion of the particle is
    (a) not simple harmonic
    (b) simple harmonic with amplitude A + B
    (c) simple harmonic with amplitude (A + B)/2
    (d) simple harmonic with amplitude
    A2+B2.
    digAnsr:   d
    Ans : (d) simple harmonic with amplitude A sin ωt + B cos ωt ...(1)
    `` \,\mathrm{\,Acceleration\,},``
    `` a=\frac{{d}^{2}x}{d{\,\mathrm{\,t\,}}^{2}}=\frac{{d}^{2}}{d{\,\mathrm{\,t\,}}^{2}}(A\,\mathrm{\,sin\,}\omega t+B\,\mathrm{\,cos\,}\omega t)``
    `` =\frac{\,\mathrm{\,d\,}}{\,\mathrm{\,dt\,}}(A\omega \,\mathrm{\,cos\,}\omega t-B\omega \,\mathrm{\,sin\,}\omega t)``
    `` =-A{\omega }^{2}\,\mathrm{\,sin\omega t\,}-B{\omega }^{2}\,\mathrm{\,cos\,}\,\mathrm{\,\omega t\,}``
    `` =-{\omega }^{2}(A\,\mathrm{\,sin\,}\omega t+B\,\mathrm{\,cos\,}\omega t)``
    `` =-{\omega }^{2}x``
    `` ``
    Page No 250: