NEET-XII-Physics

10: Rotational Mechanics

with Solutions - page 4
Qstn# ii-18 Prvs-QstnNext-Qstn
  • #18
    A thin circular ring of mass M and radius r is rotating about its axis with an angular speed ω. Two particles having mass m each are now attached at diametrically opposite points. The angular speed of the ring will become
    (a)
    ωMM+m
    (b)
    ωMM+2 m
    (c)
    ωM-2 mM+2 m
    (d)
    ωM+2 mM.
    digAnsr:   b
    Ans : (b) `` \frac{\omega M}{M+2m}``
    No external torque is applied on the ring; therefore, the angular momentum will be conserved.
    `` I\omega =I\text{'}\omega \text{'}``
    `` \Rightarrow \omega \text{'}=\frac{I\omega }{I\text{'}}...\left(i\right)``
    `` I=M{r}^{2}``
    `` I\text{'}=M{r}^{2}+2m{r}^{2}``
    On putting these values in equation (i), we get:
    `` \omega \text{'}=\frac{\omega M}{M+2m}``
    Page No 194: