NEET-XII-Physics

10: Rotational Mechanics

with Solutions - page 4
Qstn# ii-17 Prvs-QstnNext-Qstn
  • #17
    A cubical block of mass M and edge a slides down a rough inclined plane of inclination θ with a uniform velocity. The torque of the normal force on the block about its centre has a magnitude
    (a) zero
    (b) Mga
    (c) Mga sinθ
    (d)
    12 Mga sinθ.
    digAnsr:   d
    Ans : (d) `` \frac{1}{2}Mga\,\mathrm{\,sin\theta \,}``
    Let N be the normal reaction on the block.

    From the free body diagram of the block, it is clear that the forces N and mgcosθ pass through the same line. Therefore, there will be no torque due to N and mgcosθ. The only torque will be produced by mgsinθ.
    `` \therefore \stackrel{\to }{\tau }=\stackrel{\to }{F}\times \stackrel{\to }{r}``
    `` \,\mathrm{\,Since\,}a\,\mathrm{\,is\,}\,\mathrm{\,the\,}\,\mathrm{\,edge\,}\,\mathrm{\,of\,}\,\mathrm{\,the\,}\,\mathrm{\,cube\,},r=\frac{a}{2}.``
    `` \,\mathrm{\,Thus\,},\,\mathrm{\,we\,}\,\mathrm{\,have\,}:``
    `` \tau =mg\,\mathrm{\,sin\,}\theta \times \frac{a}{2}``
    `` =\frac{1}{2}mga\,\mathrm{\,sin\,}\theta ``
    Page No 194: