NEET-XII-Physics

07: Circular Motion

with Solutions - page 5
Qstn# iv-20 Prvs-QstnNext-Qstn
  • #20
    A car goes on a horizontal circular road of radius R, the speed increasing at a constant rate
    dvdt=a. The friction coefficient between the road and the tyre is μ. Find the speed at which the car will skid.
    Ans : Let v be the speed of the car.
    Since the motion is non-uniform, the acceleration has both radial (ar) and tangential (at) components.
    `` {a}_{r}=\frac{{v}^{2}}{R}``
    `` {a}_{t}=\frac{dv}{dt}=a``
    `` \,\mathrm{\,Resultant \,}\,\mathrm{\,magnitude \,}=\sqrt{{\left(\frac{{v}^{2}}{R}\right)}^{2}+{a}^{2}}``
    `` ``
    `` ``

    From free body diagram, we have:
    `` mN=m\sqrt{{\left(\frac{{v}^{2}}{R}\right)}^{2}+{a}^{2}}``
    `` \Rightarrow \mu mg=m\sqrt{{\left(\frac{{v}^{2}}{R}\right)}^{2}+{a}^{2}}``
    `` \Rightarrow {\mu }^{2}{g}^{2}=\frac{{v}^{4}}{{R}^{2}}+{a}^{2}``
    `` \Rightarrow \frac{{v}^{4}}{{R}^{2}}=({\,\mathrm{\,\mu \,}}^{2}{g}^{2}-{a}^{2})``
    `` \Rightarrow {v}^{4}=({\,\mathrm{\,\mu \,}}^{2}{g}^{2}-{a}^{2}){R}^{2}``
    `` \Rightarrow v=\left[\right({\,\mathrm{\,\mu \,}}^{2}{\,\mathrm{\,g \,}}^{2}-{\,\mathrm{\,a \,}}^{2}){R}^{2}{]}^{1/4}``
    Page No 115: