NEET-XII-Physics

07: Circular Motion

with Solutions - page 5
Qstn# iv-19-a Prvs-QstnNext-Qstn
  • #19-a
    What can its maximum velocity be for which the contact with the road is not broken at the highest point?
    Ans : At the highest point:
    Let m be the mass of the motorcycle and v be the required velocity.

    `` mg=\frac{m{v}^{2}}{R}``
    `` \Rightarrow {v}^{2}=Rg``
    `` \Rightarrow v=\sqrt{Rrg}``
    `` ``
    `` \left(\,\mathrm{\,b \,}\right)\,\mathrm{\,Given \,}:``
    `` v=\left(\frac{1}{\sqrt{2}}\right)\sqrt{Rg}``

    Suppose it loses contact at B.
    `` \,\mathrm{\,At \,}\,\mathrm{\,point \,}\,\mathrm{\,B \,},\,\mathrm{\,we \,}\,\mathrm{\,get \,}:``
    `` mg\,\mathrm{\,cos \,}\theta =\frac{m{v}^{2}}{R}``
    `` \Rightarrow {v}^{2}=Rg\,\mathrm{\,cos \,}\theta ``
    `` \,\mathrm{\,Putting \,}\,\mathrm{\,the \,}\,\mathrm{\,value \,}\,\mathrm{\,of \,}v,\,\mathrm{\,we \,}\,\mathrm{\,get \,}:``
    `` \sqrt{{\left(\frac{Rg}{2}\right)}^{2}}=Rg\,\mathrm{\,cos \,}\theta ``
    `` \Rightarrow \frac{Rg}{2}=Rg\,\mathrm{\,cos \,}\theta ``
    `` \Rightarrow \,\mathrm{\,cos \,}\theta =\frac{1}{2}``
    `` \Rightarrow \,\mathrm{\,\theta \,}=60°=\frac{\,\mathrm{\,\pi \,}}{3}``
    `` \because \theta =\frac{L}{R}``
    `` \therefore L=R\theta =\frac{\pi R}{3}``
    So, it will lose contact at a distance `` \frac{\pi R}{3}`` from the highest point.
    (c) Let the uniform speed on the bridge be v. The chances of losing contact is maximum at the end bridge. We have:

    `` \alpha =\frac{L}{2R}``
    `` \,\mathrm{\,So \,},\frac{m{v}^{2}}{R}=mg\,\mathrm{\,cos \,}\alpha ``
    `` \Rightarrow v=\sqrt{g\,\mathrm{\,Rcos \,}\left(\frac{L}{2R}\right)}``
    Page No 115: