NEET-XII-Physics

36: Permanent Magnets

with Solutions - page 4
Qstn# iv-14 Prvs-QstnNext-Qstn
  • #14
    A magnetic needle is free to rotate in a vertical plane which makes an angle of 60° with the magnetic meridian. If the needle stays in a direction making an angle of
    tan-1 23with the horizontal, what would be the dip at that place?
    Ans : Given:
    Angle made by the magnetic meridian with the plane of rotation of the needle, `` \theta =60°``
    Angle made by the needle with the horizontal, `` {\delta }_{1}={\,\mathrm{\,tan\,}}^{-1}\left(\frac{2}{\sqrt{3}}\right)``
    If `` \delta `` is the angle of dip, then
    `` \,\mathrm{\,tan\,}{\delta }_{1}=\frac{\,\mathrm{\,tan\,}\delta }{\,\mathrm{\,cos\,}\theta }``
    `` \Rightarrow \,\mathrm{\,tan\,}\delta =\,\mathrm{\,tan\,}{\delta }_{1}\,\mathrm{\,cos\,}\theta ``
    `` \Rightarrow \,\mathrm{\,tan\,}\delta =\,\mathrm{\,tan\,}\left({\,\mathrm{\,tan\,}}^{-1}\frac{2}{\sqrt{3}}\right)\,\mathrm{\,cos\,}60°``
    `` \Rightarrow \,\mathrm{\,tan\,}\delta =\frac{2}{\sqrt{3}}\times \frac{1}{2}=\frac{1}{\sqrt{3}}``
    `` \Rightarrow \delta =30°``
    Page No 278: