NEET-XII-Physics
36: Permanent Magnets
- #5-ain end-on position of the dipole and (b) in broadside-on position of the dipole. (b) in broadside-on position of the dipole.Ans : If the point is at the end-on position:
The magnetic field `` \left(B\right)`` on the axial point of the dipole is given by
`` B=\frac{{\,\mathrm{\,\mu \,}}_{0}}{4\,\mathrm{\,\pi \,}}\frac{2M}{{d}^{3}}``
`` \,\mathrm{\,Here\,},M\,\mathrm{\,is\,}\,\mathrm{\,the\,}\,\mathrm{\,magnetic\,}\,\mathrm{\,moment\,}\,\mathrm{\,of\,}\,\mathrm{\,the\,}\,\mathrm{\,dipole\,}\,\mathrm{\,that\,}\,\mathrm{\,we\,}\,\mathrm{\,need\,}\,\mathrm{\,to\,}\,\mathrm{\,find\,}\,\mathrm{\,out\,}.``
`` \therefore 2\times {10}^{-4}=\frac{{10}^{-7}\times 2M}{{\left({10}^{-1}\right)}^{3}}``
`` \Rightarrow M=\frac{2\times {10}^{-4}\times {10}^{-3}}{{10}^{-7}\times 2}``
`` \Rightarrow M=1\,\mathrm{\,A\,}-{\,\mathrm{\,m\,}}^{2}`` (b) If the point is at broadside-on position (equatorial position):
The magnetic field `` \left(B\right)`` is given by
`` B=\frac{{\,\mathrm{\,\mu \,}}_{0}}{4\,\mathrm{\,\pi \,}}\frac{\mathit{M}}{{\mathit{d}}^{\mathit{3}}}``
`` \Rightarrow 2\times {10}^{-4}=\frac{{10}^{-7}\times M}{{\left({10}^{-1}\right)}^{3}}``
`` \Rightarrow M=2\,\mathrm{\,A\,}-{\,\mathrm{\,m\,}}^{2}``
Page No 277: (b) If the point is at broadside-on position (equatorial position):
The magnetic field `` \left(B\right)`` is given by
`` B=\frac{{\,\mathrm{\,\mu \,}}_{0}}{4\,\mathrm{\,\pi \,}}\frac{\mathit{M}}{{\mathit{d}}^{\mathit{3}}}``
`` \Rightarrow 2\times {10}^{-4}=\frac{{10}^{-7}\times M}{{\left({10}^{-1}\right)}^{3}}``
`` \Rightarrow M=2\,\mathrm{\,A\,}-{\,\mathrm{\,m\,}}^{2}``
Page No 277:
- #5-bin broadside-on position of the dipole.Ans : If the point is at broadside-on position (equatorial position):
The magnetic field `` \left(B\right)`` is given by
`` B=\frac{{\,\mathrm{\,\mu \,}}_{0}}{4\,\mathrm{\,\pi \,}}\frac{\mathit{M}}{{\mathit{d}}^{\mathit{3}}}``
`` \Rightarrow 2\times {10}^{-4}=\frac{{10}^{-7}\times M}{{\left({10}^{-1}\right)}^{3}}``
`` \Rightarrow M=2\,\mathrm{\,A\,}-{\,\mathrm{\,m\,}}^{2}``
Page No 277: