NEET-XII-Physics

33: Thermal and Chemical Effects of Electric Current

with Solutions -
  • #2
    Two unequal resistances, R1 and R2, are connected across two identical batteries of emf ε and internal resistance r (figure). Can the thermal energies developed in R1 and R2 be equal in a given time? If yes, what will be the condition?
    Figure
    Ans :
    For the given time t, let the currents passing through the resistance R1 and R2 be i1 and i2 , respectively.
    Applying Kirchoff's Voltage Law to circuit-1, we get:
    `` \epsilon -{i}_{1}r-{i}_{1}{R}_{1}=0``
    `` \Rightarrow {i}_{1}=\frac{\epsilon }{r+{R}_{1}}``
    Similarly, the current in the other circuit,
    `` {i}_{2}=\frac{\epsilon }{r+{R}_{2}}``
    The thermal energies through the resistances are given by
    `` {i}_{1}^{2}{R}_{1}t={i}_{2}^{2}{R}_{2}t``
    `` {\left(\frac{\epsilon }{r+{R}_{1}}\right)}^{2}{R}_{1}t={\left(\frac{\epsilon }{r+{R}_{2}}\right)}^{2}{R}_{2}t``
    `` \frac{{R}_{1}}{{\left(r+{R}_{1}\right)}^{2}}=\frac{{R}_{2}}{{\left(r+{R}_{2}\right)}^{2}}``
    `` \frac{\left({r}^{2}+{{R}_{1}}^{2}+2r{R}_{1}\right)}{{R}_{1}}=\frac{\left({r}^{2}+{{R}_{2}}^{2}+2r{R}_{2}\right)}{{R}_{2}}``
    `` \frac{{r}^{2}}{{R}_{1}}+{R}_{1}=\frac{{r}^{2}}{{R}_{2}}+{R}_{2}``
    `` {r}^{2}\left(\frac{1}{{R}_{1}}-\frac{1}{{R}_{2}}\right)={R}_{2}-{R}_{1}``
    `` {r}^{2}\times \frac{{R}_{2}-{R}_{1}}{{R}_{1}{R}_{2}}={R}_{2}-{R}_{1}``
    `` {r}^{2}={R}_{1}{R}_{2}``
    `` \Rightarrow r=\sqrt{{R}_{1}{R}_{2}}``
    Page No 217: