NEET-XII-Physics
33: Thermal and Chemical Effects of Electric Current
Note: Please signup/signin free to get personalized experience.
Note: Please signup/signin free to get personalized experience.
10 minutes can boost your percentage by 10%
Note: Please signup/signin free to get personalized experience.
- Qstn #14Find the thermo-emf developed in a copper-silver thermocouple when the junctions are kept at 0°C and 40°C. Use the data in table (33.1).Ans : Difference in temperature, θ = 40°C
Emf, Ecs = acsθ + `` \frac{1}{2}``bcsθ2 ...(1)
acs = [2.76 - (-43.7) μV
= 46.46 μV/°C
bcs = [0.012 - (-0.47) μV/°C
= 0.482 μV/°C2
Putting this value in eq. (1), we get:
Ecs = 46.46 × 10-6 × 40 + `` \frac{1}{2}`` × 0.482 × 10-6 × (40)2
= 1.04 × 10-5 V
Page No 219:
- Qstn #15Find the neutral temperature and inversion temperature of a copper-iron thermocouple if the reference junction is kept at 0°C. Use the data in the table (33.1).Ans : Neutral temperature,
`` {\theta }_{n}=-\frac{a}{b}``
`` {a}_{CuFe}={a}_{CuPb}-{a}_{FePb}``
`` =2.76-16.6=13.84\,\mathrm{\,\mu V\,}°{\,\mathrm{\,C\,}}^{-1}``
`` {b}_{CuFe}={b}_{CuPb}-{b}_{FePb}``
`` =0.012+0.030=0.042\,\mathrm{\,\mu V\,}°{\,\mathrm{\,C\,}}^{-2}``
Thus, the neutral temperature,
`` {\theta }_{n}=\frac{-{a}_{CuFe}}{{b}_{CuFe}}=\frac{13.84}{0.042}=329.52°\,\mathrm{\,C\,}=330°\,\mathrm{\,C\,}``
The inversion temperature is double the neutral temperature, i.e. 659 `` °``C.
Page No 219:
- #16-aa monovalent material andAns : Amount of charge required by 1 equivalent mass of the substance = 96500 C
For a monovalent material,
equivalent mass = molecular mass
⇒ Amount of charge required by 6.023 × 1023 atoms = 96500 C
∴ Amount of charge required by 1 atom = `` \frac{96500}{6.023\times {10}^{23}}=1.6\times {10}^{-19}\,\mathrm{\,C\,}``
- #16-ba divalent material.Ans : For a divalent material,
equivalent mass =`` \frac{1}{2}``molecular mass
⇒ Amount of charge required by `` \frac{1}{2}`` × 6.023 × 1023 = 96500 C
∴ Amount of charge required by 1 atom = 1.6 × 2 × 10-19 = 3.2 × 10-19 C
Page No 219:
- Qstn #17Find the amount of silver liberated at the cathode if 0.500 A of current is passed through an AgNO3 electrolyte for 1 hour. Atomic weight of silver is 107.9 g mol-1.Ans : Equivalent mass of silver, EAg = 107.9 g (∵ Ag is monoatomic)
The ECE of silver,
`` {Z}_{\mathit{A}\mathit{g}}=\frac{{E}_{Ag}}{f}=\frac{107.9}{96500}=0.001118``
Using the formula, m = Zit, we get:
m = 0.00118 × 0.500 × 3600
= 2.01 g
So, 2.01 g of silver is liberated.
Page No 219:
- Qstn #18An electroplating unit plates 3.0 g of silver on a brass plate in 3.0 minutes. Find the current used by the unit. The electrochemical equivalent of silver is 1.12 × 10-6 kg C-1.Ans : Given:
Mass of silver deposited, m = 3 g
Time taken, t = 3 min. = 180 s
E.C.E. of silver, Z = 1.12 × 10-6 kg C-1
Using the formula, m = Zit, we get:
`` 3\times {10}^{-3}=1.12\times {10}^{-6}\times i\times 180``
`` ``
`` \Rightarrow i=\frac{3\times {10}^{-3}}{1.12\times {10}^{-6}\times 180}``
`` \Rightarrow i=\frac{1}{6.72}\times {10}^{2}``
`` \Rightarrow i=14.89\approx 15\,\mathrm{\,A\,}``
Page No 219:
- Qstn #19Find the time required to liberate 1.0 litre of hydrogen at STP in an electrolytic cell by a current of 5.0 A.Ans : Let the required time be t.
Mass of 1 litre hydrogen,
`` m=\frac{2}{22.4}\,\mathrm{\,g\,}``
`` ``
Using the formula, m = Zit, we get:
`` \frac{2}{22.4}=\frac{1\times 5\times t}{96500}``
`` \Rightarrow t=\frac{2\times 96500}{22.4\times 5}``
`` \Rightarrow t=1723.21\,\mathrm{\,s\,}=28.7\,\mathrm{\,minutes\,}\approx 29\,\mathrm{\,minutes\,}``
Page No 219:
- Qstn #20Two voltameters, one with a solution of silver salt and the other with a trivalent-metal salt, are connected in series and a current of 2 A is maintained for 1.50 hours. It is found that 1.00 g of the trivalent metal is deposited.Ans : Given:
Mass of salt deposited, m = 1 g
Current, i = 2 A
Time, t = 1.5 hours = 5400 s
For the trivalent metal salt:
Equivalent mass = `` \frac{1}{3}``Atomic weight
The E.C.E of the salt,
`` Z=\frac{\,\mathrm{\,Equivalent\,}\,\mathrm{\,mass\,}}{96500}=\frac{\,\mathrm{\,Atomic\,}\,\mathrm{\,weight\,}}{3\times 96500}``
- #20-aWhat is the atomic weight of the trivalent metal?Ans : Using the formula, m = Zit, we get:
`` 1\times {10}^{-3}=\frac{\,\mathrm{\,Atomic\,}\,\mathrm{\,weight\,}}{3\times 96500}\times 2\times 5400``
`` \Rightarrow \,\mathrm{\,Atomic\,}\,\mathrm{\,weight\,}=\frac{3\times 96500\times {10}^{-3}}{2\times 5400}=26.8\times {10}^{-3}\,\mathrm{\,kg\,}/\,\mathrm{\,mole\,}``
`` \Rightarrow \,\mathrm{\,Atomic\,}\,\mathrm{\,weight\,}=26.8\,\mathrm{\,g\,}/\,\mathrm{\,mole\,}``
- #20-bHow much silver is deposited during this period? Atomic weight of silver is 107.9 g mol-1.Ans : Using the relation between equivalent mass and mass deposited on plates, we get:
`` \frac{{E}_{\mathit{1}}}{{E}_{\mathit{2}}}=\frac{{m}_{1}}{{m}_{2}}``
`` \Rightarrow \frac{26.8}{3\times 107.9}=\frac{1}{{m}_{2}}``
`` \Rightarrow {m}_{2}=12.1\,\mathrm{\,g\,}``
`` ``
Page No 219:
- Qstn #21A brass plate of surface area 200 cm2 on one side is electroplated with 0.10 mm thick silver layers on both sides using a 15 A current. Find the time taken to do the job. The specific gravity of silver is 10.5 and its atomic weight is 107.9 g mol-1.Ans : Given:
Current, i = 15 A
Surface area of the plate = 200 cm2,
Thickness of silver deposited= 0.1 mm = 0.01 cm
Volume of Ag deposited on one side = 200 × 0.01 cm3 = 2 cm3
∴ Volume of Ag deposited on both side = 4 cm3
Mass of silver deposited,
m = Volume × Specific gravity × 1000 = 4 × 10-3 × 10.5 ×1000 = 42 kg
Using the formula, m = Zit, we get:
42 = ZAg × 15 × t
`` \Rightarrow t=\frac{42\times 96500}{107.9\times 15}\,\mathrm{\,s\,}``
`` \Rightarrow t=2504.17\,\mathrm{\,s\,}=42\,\mathrm{\,minutes\,}``
Page No 219:
- Qstn #22The figure shows an electrolyte of AgCl through which a current is passed. It is observed that 2.68 g of silver is deposited in 10 minutes on the cathode. Find the heat developed in the 20 Ω resistor during this period. Atomic weight of silver is 107.9 g mol-1.
FigureAns : Given:
Mass of silver deposited, m = 2.68 g
Time, t = 10 minutes = 600 s
Using the formula, m = Zit, we get:
`` 2.68\times {10}^{-3}=\frac{107.9\times {10}^{-3}}{96500}\times i\times 600``
`` \Rightarrow i=\frac{2.68\times 96500}{107.9\times 600}``
`` \Rightarrow i=3.99=4\,\mathrm{\,A\,}``
Heat developed in the 20 Ω resistor,
`` H={i}^{2}Rt``
`` \Rightarrow H={\left(4\right)}^{2}\times 20\times 600``
`` \Rightarrow H=192000\,\mathrm{\,J\,}=192\,\mathrm{\,kJ\,}``
Page No 219:
- Qstn #23The potential difference across the terminals of a battery of emf 12 V and internal resistance 2 Ω drops to 10 V when it is connected to a silver voltameter. Find the silver deposited at the cathode in half an hour. Atomic weight of silver is 107.9 g mol-1.Ans : Let i be the current through the circuit.
Emf of battery, E = 12 V
Voltage drop across the voltameter, V = 10 V
Internal resistance of the battery, r = 2 Ω
Applying Kirchoff's Law in the circuit, we get:
`` E=V+ir``
`` \Rightarrow i=\frac{E-V}{r}=\frac{12-10}{2}=1\,\mathrm{\,A\,}``
Using the formula m = Zit, we get:
`` m=\frac{107.9}{96500}\times 1\times 0.5\times 3600=2.01\,\mathrm{\,g\,}``
Page No 219:
- Qstn #24A plate of area 10 cm2 is to be electroplated with copper (density 9000 kg m-3) to a thickness of 10 micrometres on both sides, using a cell of 12 V. Calculate the energy spent by the cell in the process of deposition. If this energy is used to heat 100 g of water, calculate the rise in the temperature of the water. ECE of copper = 3 × 10-7 kg C-1 and specific heat capacity of water = 4200 J kg-1Ans : Surface area of the plate, A = 10 cm2 = 10 × 10-4 m2
Thickness of copper deposited, t = 10 μm = 10-5 m
Density of copper = 9000 kg/m3
Volume of copper deposited, V = A(2t)
V = 10 × 10-4 × 2 × 10 × 10-6
= 2 × 102 × 10-10
= 2 × 10-8 m3
Mass of copper deposited, m = Volume × Density = 2 × 10-8 × 9000
⇒ m = 18 × 10-5 kg
Using the formula, m = ZQ, we get:
18 × 10-5 = 3 × 10-7 × Q
⇒ Q = 6 × 102 C
Energy spent by the cell = Work done by the cell
⇒W = VQ
= 12 × 6 × 102
= 72 × 102 = 7.2 kJ
Let ∆θ be the rise in temperature of water. When this energy is used to heat 100 g of water, we have:
7.2 × 103 = 100 × 10-3 × 4200 × ∆θ
⇒ ∆θ = 17 K