NEET-XII-Physics

32: Electric Current in Conductors

with Solutions - page 6
Qstn# iv-34 Prvs-QstnNext-Qstn
  • #34
    Figure (32-E10) shows a part of an electric circuit. The potentials at the points a, b and c are 30 V, 12 V and 2 V respectively. Find the currents through the three resistors.
    Figure 32-E10
    Ans :
    Let the potential at the point o be X volts.
    From the figure,
    `` {i}_{1}=\frac{{V}_{\,\mathrm{\,a\,}}-{V}_{\,\mathrm{\,o\,}}}{10}``
    `` {V}_{\,\mathrm{\,a\,}}=30\,\mathrm{\,V\,}\,\mathrm{\,and\,}{V}_{\,\mathrm{\,o\,}}=X``
    `` So,{i}_{1}=\frac{30-X}{10}``
    `` \,\mathrm{\,Similarly\,},``
    `` {i}_{2}=\frac{{V}_{\,\mathrm{\,o\,}}-{V}_{\,\mathrm{\,b\,}}}{20}``
    `` =\frac{X-12}{20}``
    `` \,\mathrm{\,And\,}``
    `` {i}_{3}=\frac{{V}_{\,\mathrm{\,o\,}}-{V}_{\,\mathrm{\,c\,}}}{30}``
    `` =\frac{X-2}{30}``
    Also, from kirchoff's junction law we have:
    i1 = i2 + i3
    `` \Rightarrow \frac{30-X}{10}=\frac{X-12}{20}+\frac{X-2}{30}``
    `` \Rightarrow 30-X=\frac{X-12}{2}+\frac{X-2}{3}``
    `` \Rightarrow 30-X=\frac{3X-36+2X-4}{6}``
    `` \Rightarrow 180-6X=5X-40``
    `` \Rightarrow 11X=220``
    `` \Rightarrow X=\frac{220}{11}=20\,\mathrm{\,V\,}``
    Thus, the currents through the three resistors are:
    `` {i}_{1}=\frac{30-20}{10}=1\,\mathrm{\,A\,}``
    `` {i}_{2}=\frac{20-12}{20}=\frac{8}{20}=0.4\,\mathrm{\,A\,}``
    `` {i}_{3}=\frac{20-2}{30}=\frac{18}{30}=0.6\,\mathrm{\,A\,}``
    Page No 200: