NEET-XII-Physics

31: Capacitors

with Solutions - page 4
Qstn# iv-19 Prvs-QstnNext-Qstn
  • #19
    A 100 pF capacitor is charged to a potential difference of 24 V. It is connected to an uncharged capacitor of capacitance 20 pF. What will be the new potential difference across the 100 pF capacitor?
    Ans : Given:
    `` {C}_{1}=100\,\mathrm{\,pF\,}``
    `` V=24\,\mathrm{\,V\,}``
    Charge on the given capacitor, `` q={C}_{1}V=24\times 100\,\mathrm{\,pC\,}``
    Capacitance of the uncharged capacitor,`` {C}_{2}=20\,\mathrm{\,pF\,}``
    When the charged capacitor is connected with the uncharged capacitor, the net charge on the system of the capacitors becomes
    `` {q}_{1}+{q}_{2}=24\times 100\,\mathrm{\,qC\,}...\left(\,\mathrm{\,i\,}\right)``
    The potential difference across the plates of the capacitors will be the same.
    Thus,
    `` \frac{{q}_{1}}{{C}_{1}}=\frac{{q}_{2}}{{C}_{2}}``
    `` \Rightarrow \frac{{q}_{1}}{100}=\frac{{q}_{2}}{20}``
    `` \Rightarrow {q}_{1}=5{q}_{2}...\left(\,\mathrm{\,ii\,}\right)``
    From eqs. (i) and (ii), we get
    `` {q}_{1}+\frac{{q}_{1}}{5}=24\times 100\,\mathrm{\,pC\,}``
    `` \Rightarrow 6{q}_{1}=5\times 24\times 100\,\mathrm{\,pC\,}``
    `` \Rightarrow {q}_{1}=\frac{5\times 24\times 100}{6}\,\mathrm{\,pC\,}``
    `` \,\mathrm{\,Now\,},``
    `` {V}_{1}=\frac{{q}_{1}}{{C}_{1}}``
    `` =\frac{5\times 24\times 100\,\mathrm{\,pC\,}}{6\times 100\,\mathrm{\,pF\,}}=20\,\mathrm{\,V\,}``
    Page No 166: