NEET-XII-Physics

28: Heat Transfer

with Solutions - page 4
Qstn# iv-30 Prvs-QstnNext-Qstn
  • #30
    The three rods shown in figure (28-E7) have identical geometrical dimensions. Heat flows from the hot end at a rate of 40 W in the arrangement (a) Find the rates of heat flow when the rods are joined as in arrangement (b) and in (c) Thermal condcutivities of aluminium and copper are 200 W m-1°C-1 and 400 W m-1°C-1 respectively.
    Figure (a) Find the rates of heat flow when the rods are joined as in arrangement (b) and in (c) Thermal condcutivities of aluminium and copper are 200 W m-1°C-1 and 400 W m-1°C-1 respectively.
    Figure
    Ans : For arrangement (a) ,

    Temperature of the hot end ,T1 = 100°C
    Temperature of the cold end ,T2 = 0°C
    Rs = R1 + R2 + R3
    `` =\frac{l}{{K}_{\,\mathrm{\,Al\,}}\,\mathrm{\,A\,}}+\frac{l}{{K}_{\,\mathrm{\,cu\,}}\,\mathrm{\,A\,}}+\frac{l}{{K}_{\mathit{Al}}A}``
    `` =\frac{\mathit{l}}{\mathit{A}}\left(\frac{1}{200}+\frac{1}{400}+\frac{1}{200}\right)``
    `` =\frac{l}{\,\mathrm{\,A\,}}\left(\frac{5}{400}\right)``
    `` =\frac{l}{\,\mathrm{\,A\,}}\times \frac{1}{80}``
    `` \frac{\,\mathrm{\,d\,}Q}{dt}=q=\,\mathrm{\,Rate\,}\,\mathrm{\,of\,}\,\mathrm{\,flow\,}\,\mathrm{\,of\,}\,\mathrm{\,heat\,}=\frac{{T}_{1}-{T}_{2}}{{R}_{\,\mathrm{\,S\,}}}``
    `` =\frac{100-0}{{\displaystyle \frac{l}{\,\mathrm{\,A\,}}\times \frac{1}{80}}}``
    `` ``
    `` \,\mathrm{\,Given\,}:``
    `` q=40\,\mathrm{\,W\,}``
    `` 40=\frac{100}{{\displaystyle \frac{l}{\,\mathrm{\,A\,}}}\times {\displaystyle \frac{1}{80}}}``
    `` \Rightarrow \frac{l}{\,\mathrm{\,A\,}}=200``
    `` \Rightarrow \frac{\,\mathrm{\,A\,}}{l}=\frac{1}{200}``
    `` ``
    For arrangement (b) ,

    `` {R}_{\,\mathrm{\,net\,}}={R}_{\,\mathrm{\,Al\,}}+\frac{{R}_{\,\mathrm{\,Cu\,}}\times {R}_{\,\mathrm{\,Al\,}}}{{\,\mathrm{\,R\,}}_{\,\mathrm{\,Cu\,}}+{\,\mathrm{\,R\,}}_{\,\mathrm{\,Al\,}}}``
    `` =\frac{l}{{K}_{\,\mathrm{\,Al\,}}A}+\frac{{\displaystyle \frac{l}{{K}_{\,\mathrm{\,Cu\,}}A}}\times {\displaystyle \frac{l}{{K}_{\,\mathrm{\,Al\,}}l}}}{{\displaystyle \frac{l}{{K}_{\,\mathrm{\,Cu\,}}A}}+{\displaystyle \frac{l}{{K}_{\mathit{Al}}\,\mathrm{\,A\,}}}}``
    `` =\frac{\mathit{l}}{\mathit{A}\mathit{·}{\mathit{K}}_{\mathit{Al}}}\mathit{+}\frac{\mathit{l}}{\mathit{A}\left({\mathit{K}}_{\mathit{Al}}\mathit{+}{\mathit{K}}_{\mathit{Cu}}\right)}``
    `` =\frac{l}{\,\mathrm{\,A\,}}\left(\frac{1}{200}+\frac{1}{200+400}\right)``
    `` =\frac{l}{\,\mathrm{\,A\,}}\left(\frac{1}{200}+\frac{1}{600}\right)``
    `` =\frac{4}{600}.\frac{l}{\,\mathrm{\,A\,}}``
    Rate of flow of heat is given by
    `` q=\frac{{\,\mathrm{\,T\,}}_{1}-{\,\mathrm{\,T\,}}_{2}}{{\,\mathrm{\,R\,}}_{\,\mathrm{\,net\,}}}``
    `` =\frac{\left(100-0\right)}{4l}600\,\mathrm{\,A\,}``
    `` =\frac{100\times 600}{4}\times \frac{1}{200}``
    `` =75\,\mathrm{\,W\,}``
    For arrangement (c) ,

    `` \frac{\mathit{1}}{{\mathit{R}}_{\mathit{net}}}\mathit{=}\frac{\mathit{1}}{{\mathit{R}}_{\mathit{Al}}}\mathit{+}\frac{\mathit{1}}{{\mathit{R}}_{\mathit{Cu}}}\mathit{+}\frac{\mathit{1}}{{\mathit{R}}_{\mathit{Al}}}``
    `` =\frac{{K}_{\,\mathrm{\,Al\,}}A}{l}+\frac{{K}_{\,\mathrm{\,Cu\,}}A}{l}+\frac{{K}_{\,\mathrm{\,Al\,}}A}{l}``
    `` \frac{1}{{R}_{\,\mathrm{\,net\,}}}=\left({K}_{\,\mathrm{\,Al\,}}+{K}_{\,\mathrm{\,Cu\,}}+{K}_{\,\mathrm{\,Al\,}}\right)\frac{\mathit{A}}{\mathit{l}}``
    `` \frac{1}{{R}_{\,\mathrm{\,net\,}}}=\left(200+400+200\right)\times \frac{1}{200}``
    `` \Rightarrow {R}_{\,\mathrm{\,net\,}}=\frac{200}{800}``
    `` =\frac{1}{4}``
    `` ``
    `` \,\mathrm{\,Rate\,}\,\mathrm{\,of\,}\,\mathrm{\,heat\,}\,\mathrm{\,flow\,}=\frac{\Delta T}{{R}_{\,\mathrm{\,net\,}}}``
    `` =\frac{100}{{\displaystyle \frac{1}{4}}}``
    `` =400\,\mathrm{\,W\,}``
    Page No 100: (a) ,

    Temperature of the hot end ,T1 = 100°C
    Temperature of the cold end ,T2 = 0°C
    Rs = R1 + R2 + R3
    `` =\frac{l}{{K}_{\,\mathrm{\,Al\,}}\,\mathrm{\,A\,}}+\frac{l}{{K}_{\,\mathrm{\,cu\,}}\,\mathrm{\,A\,}}+\frac{l}{{K}_{\mathit{Al}}A}``
    `` =\frac{\mathit{l}}{\mathit{A}}\left(\frac{1}{200}+\frac{1}{400}+\frac{1}{200}\right)``
    `` =\frac{l}{\,\mathrm{\,A\,}}\left(\frac{5}{400}\right)``
    `` =\frac{l}{\,\mathrm{\,A\,}}\times \frac{1}{80}``
    `` \frac{\,\mathrm{\,d\,}Q}{dt}=q=\,\mathrm{\,Rate\,}\,\mathrm{\,of\,}\,\mathrm{\,flow\,}\,\mathrm{\,of\,}\,\mathrm{\,heat\,}=\frac{{T}_{1}-{T}_{2}}{{R}_{\,\mathrm{\,S\,}}}``
    `` =\frac{100-0}{{\displaystyle \frac{l}{\,\mathrm{\,A\,}}\times \frac{1}{80}}}``
    `` ``
    `` \,\mathrm{\,Given\,}:``
    `` q=40\,\mathrm{\,W\,}``
    `` 40=\frac{100}{{\displaystyle \frac{l}{\,\mathrm{\,A\,}}}\times {\displaystyle \frac{1}{80}}}``
    `` \Rightarrow \frac{l}{\,\mathrm{\,A\,}}=200``
    `` \Rightarrow \frac{\,\mathrm{\,A\,}}{l}=\frac{1}{200}``
    `` ``
    For arrangement (b) ,

    `` {R}_{\,\mathrm{\,net\,}}={R}_{\,\mathrm{\,Al\,}}+\frac{{R}_{\,\mathrm{\,Cu\,}}\times {R}_{\,\mathrm{\,Al\,}}}{{\,\mathrm{\,R\,}}_{\,\mathrm{\,Cu\,}}+{\,\mathrm{\,R\,}}_{\,\mathrm{\,Al\,}}}``
    `` =\frac{l}{{K}_{\,\mathrm{\,Al\,}}A}+\frac{{\displaystyle \frac{l}{{K}_{\,\mathrm{\,Cu\,}}A}}\times {\displaystyle \frac{l}{{K}_{\,\mathrm{\,Al\,}}l}}}{{\displaystyle \frac{l}{{K}_{\,\mathrm{\,Cu\,}}A}}+{\displaystyle \frac{l}{{K}_{\mathit{Al}}\,\mathrm{\,A\,}}}}``
    `` =\frac{\mathit{l}}{\mathit{A}\mathit{·}{\mathit{K}}_{\mathit{Al}}}\mathit{+}\frac{\mathit{l}}{\mathit{A}\left({\mathit{K}}_{\mathit{Al}}\mathit{+}{\mathit{K}}_{\mathit{Cu}}\right)}``
    `` =\frac{l}{\,\mathrm{\,A\,}}\left(\frac{1}{200}+\frac{1}{200+400}\right)``
    `` =\frac{l}{\,\mathrm{\,A\,}}\left(\frac{1}{200}+\frac{1}{600}\right)``
    `` =\frac{4}{600}.\frac{l}{\,\mathrm{\,A\,}}``
    Rate of flow of heat is given by
    `` q=\frac{{\,\mathrm{\,T\,}}_{1}-{\,\mathrm{\,T\,}}_{2}}{{\,\mathrm{\,R\,}}_{\,\mathrm{\,net\,}}}``
    `` =\frac{\left(100-0\right)}{4l}600\,\mathrm{\,A\,}``
    `` =\frac{100\times 600}{4}\times \frac{1}{200}``
    `` =75\,\mathrm{\,W\,}``
    For arrangement (c) ,

    `` \frac{\mathit{1}}{{\mathit{R}}_{\mathit{net}}}\mathit{=}\frac{\mathit{1}}{{\mathit{R}}_{\mathit{Al}}}\mathit{+}\frac{\mathit{1}}{{\mathit{R}}_{\mathit{Cu}}}\mathit{+}\frac{\mathit{1}}{{\mathit{R}}_{\mathit{Al}}}``
    `` =\frac{{K}_{\,\mathrm{\,Al\,}}A}{l}+\frac{{K}_{\,\mathrm{\,Cu\,}}A}{l}+\frac{{K}_{\,\mathrm{\,Al\,}}A}{l}``
    `` \frac{1}{{R}_{\,\mathrm{\,net\,}}}=\left({K}_{\,\mathrm{\,Al\,}}+{K}_{\,\mathrm{\,Cu\,}}+{K}_{\,\mathrm{\,Al\,}}\right)\frac{\mathit{A}}{\mathit{l}}``
    `` \frac{1}{{R}_{\,\mathrm{\,net\,}}}=\left(200+400+200\right)\times \frac{1}{200}``
    `` \Rightarrow {R}_{\,\mathrm{\,net\,}}=\frac{200}{800}``
    `` =\frac{1}{4}``
    `` ``
    `` \,\mathrm{\,Rate\,}\,\mathrm{\,of\,}\,\mathrm{\,heat\,}\,\mathrm{\,flow\,}=\frac{\Delta T}{{R}_{\,\mathrm{\,net\,}}}``
    `` =\frac{100}{{\displaystyle \frac{1}{4}}}``
    `` =400\,\mathrm{\,W\,}``
    Page No 100:
  • #30-a
    Find the rates of heat flow when the rods are joined as in arrangement
    Ans : ,

    Temperature of the hot end ,T1 = 100°C
    Temperature of the cold end ,T2 = 0°C
    Rs = R1 + R2 + R3
    `` =\frac{l}{{K}_{\,\mathrm{\,Al\,}}\,\mathrm{\,A\,}}+\frac{l}{{K}_{\,\mathrm{\,cu\,}}\,\mathrm{\,A\,}}+\frac{l}{{K}_{\mathit{Al}}A}``
    `` =\frac{\mathit{l}}{\mathit{A}}\left(\frac{1}{200}+\frac{1}{400}+\frac{1}{200}\right)``
    `` =\frac{l}{\,\mathrm{\,A\,}}\left(\frac{5}{400}\right)``
    `` =\frac{l}{\,\mathrm{\,A\,}}\times \frac{1}{80}``
    `` \frac{\,\mathrm{\,d\,}Q}{dt}=q=\,\mathrm{\,Rate\,}\,\mathrm{\,of\,}\,\mathrm{\,flow\,}\,\mathrm{\,of\,}\,\mathrm{\,heat\,}=\frac{{T}_{1}-{T}_{2}}{{R}_{\,\mathrm{\,S\,}}}``
    `` =\frac{100-0}{{\displaystyle \frac{l}{\,\mathrm{\,A\,}}\times \frac{1}{80}}}``
    `` ``
    `` \,\mathrm{\,Given\,}:``
    `` q=40\,\mathrm{\,W\,}``
    `` 40=\frac{100}{{\displaystyle \frac{l}{\,\mathrm{\,A\,}}}\times {\displaystyle \frac{1}{80}}}``
    `` \Rightarrow \frac{l}{\,\mathrm{\,A\,}}=200``
    `` \Rightarrow \frac{\,\mathrm{\,A\,}}{l}=\frac{1}{200}``
    `` ``
    For arrangement
  • #30-b
    and in
    Ans : ,

    `` {R}_{\,\mathrm{\,net\,}}={R}_{\,\mathrm{\,Al\,}}+\frac{{R}_{\,\mathrm{\,Cu\,}}\times {R}_{\,\mathrm{\,Al\,}}}{{\,\mathrm{\,R\,}}_{\,\mathrm{\,Cu\,}}+{\,\mathrm{\,R\,}}_{\,\mathrm{\,Al\,}}}``
    `` =\frac{l}{{K}_{\,\mathrm{\,Al\,}}A}+\frac{{\displaystyle \frac{l}{{K}_{\,\mathrm{\,Cu\,}}A}}\times {\displaystyle \frac{l}{{K}_{\,\mathrm{\,Al\,}}l}}}{{\displaystyle \frac{l}{{K}_{\,\mathrm{\,Cu\,}}A}}+{\displaystyle \frac{l}{{K}_{\mathit{Al}}\,\mathrm{\,A\,}}}}``
    `` =\frac{\mathit{l}}{\mathit{A}\mathit{·}{\mathit{K}}_{\mathit{Al}}}\mathit{+}\frac{\mathit{l}}{\mathit{A}\left({\mathit{K}}_{\mathit{Al}}\mathit{+}{\mathit{K}}_{\mathit{Cu}}\right)}``
    `` =\frac{l}{\,\mathrm{\,A\,}}\left(\frac{1}{200}+\frac{1}{200+400}\right)``
    `` =\frac{l}{\,\mathrm{\,A\,}}\left(\frac{1}{200}+\frac{1}{600}\right)``
    `` =\frac{4}{600}.\frac{l}{\,\mathrm{\,A\,}}``
    Rate of flow of heat is given by
    `` q=\frac{{\,\mathrm{\,T\,}}_{1}-{\,\mathrm{\,T\,}}_{2}}{{\,\mathrm{\,R\,}}_{\,\mathrm{\,net\,}}}``
    `` =\frac{\left(100-0\right)}{4l}600\,\mathrm{\,A\,}``
    `` =\frac{100\times 600}{4}\times \frac{1}{200}``
    `` =75\,\mathrm{\,W\,}``
    For arrangement
  • #30-c
    Thermal condcutivities of aluminium and copper are 200 W m-1°C-1 and 400 W m-1°C-1 respectively.
    Figure
    Ans : ,

    `` \frac{\mathit{1}}{{\mathit{R}}_{\mathit{net}}}\mathit{=}\frac{\mathit{1}}{{\mathit{R}}_{\mathit{Al}}}\mathit{+}\frac{\mathit{1}}{{\mathit{R}}_{\mathit{Cu}}}\mathit{+}\frac{\mathit{1}}{{\mathit{R}}_{\mathit{Al}}}``
    `` =\frac{{K}_{\,\mathrm{\,Al\,}}A}{l}+\frac{{K}_{\,\mathrm{\,Cu\,}}A}{l}+\frac{{K}_{\,\mathrm{\,Al\,}}A}{l}``
    `` \frac{1}{{R}_{\,\mathrm{\,net\,}}}=\left({K}_{\,\mathrm{\,Al\,}}+{K}_{\,\mathrm{\,Cu\,}}+{K}_{\,\mathrm{\,Al\,}}\right)\frac{\mathit{A}}{\mathit{l}}``
    `` \frac{1}{{R}_{\,\mathrm{\,net\,}}}=\left(200+400+200\right)\times \frac{1}{200}``
    `` \Rightarrow {R}_{\,\mathrm{\,net\,}}=\frac{200}{800}``
    `` =\frac{1}{4}``
    `` ``
    `` \,\mathrm{\,Rate\,}\,\mathrm{\,of\,}\,\mathrm{\,heat\,}\,\mathrm{\,flow\,}=\frac{\Delta T}{{R}_{\,\mathrm{\,net\,}}}``
    `` =\frac{100}{{\displaystyle \frac{1}{4}}}``
    `` =400\,\mathrm{\,W\,}``
    Page No 100: