NEET-XII-Physics

28: Heat Transfer

with Solutions - page 4
Qstn# iv-26 Prvs-QstnNext-Qstn
  • #26
    Consider the situation shown in figure (28-E5). The frame is made of the same material and has a uniform cross-sectional area everywhere. Calculate the amount of heat flowing per second through a cross section of the bent part if the total heat taken out per second from the end at 100°C is 130 J.
    Figure
    Ans :

    `` {R}_{\,\mathrm{\,BC\,}}=\frac{l}{KA}=\frac{5}{KA}``
    `` {R}_{\,\mathrm{\,CD\,}}=\frac{l}{KA}=\frac{60}{KA}``
    `` {R}_{\,\mathrm{\,DE\,}}=\frac{5}{KA},{R}_{\,\mathrm{\,AB\,}}=\frac{20}{KA},{R}_{\,\mathrm{\,EF\,}}=\frac{20}{KA}``
    `` \,\mathrm{\,Suppose\,}:``
    `` {R}_{1}={R}_{\,\mathrm{\,BC\,}}+{R}_{\,\mathrm{\,CD\,}}+{R}_{\,\mathrm{\,DE\,}}=\frac{70}{KA}``
    `` \,\mathrm{\,Suppose\,}:``
    `` {R}_{\,\mathrm{\,BE\,}}=\frac{60}{KA}={R}_{2}``

    q = q1 + q2 ...(1)
    R1 and R2 are in parallel, so total heat across R1 and R2 will be same.
    ⇒ q1R1 = q2R2
    `` {q}_{1}\times \frac{70}{KA}={q}_{2}\times \frac{60}{KA}``
    `` 7{q}_{1}=6{q}_{2}``
    `` \frac{7{q}_{1}}{6}={q}_{2}...\left(2\right)``
    `` ``
    From equation (1) and (2),
    `` q={q}_{1}+\frac{7{q}_{1}}{6}``
    `` q=\frac{13{q}_{1}}{6}``
    `` q=130\,\mathrm{\,J\,}``
    `` 130=\frac{13{q}_{1}}{6}``
    `` {q}_{1}=60\,\mathrm{\,J\,}/\,\mathrm{\,sec\,}``
    Page No 100: