NEET-XII-Physics
24: Kinetic Theory of Gases
- #30A vertical cylinder of height 100 cm contains air at a constant temperature. The top is closed by a frictionless light piston. The atmospheric pressure is equal to 75 cm of mercury. Mercury is slowly poured over the piston. Find the maximum height of the mercury column that can be put on the piston.Ans : `` \begin{array}{l}\text{Here,}\\ h=1m\\ \\ {P}_{1}=0.75\text{mHg = 0}\text{.75}\rho \text{g Pa}\\ \rho {\text{=13500 kg/m}}^{3}\\ \text{Let h be the height of the mercury above the piston.}\\ {P}_{2}={P}_{1}+h\rho g\\ \text{Let the CSA be A.}\\ {V}_{1}=Ah=A\\ {V}_{2}=(1-h)A\\ \text{Applying Boyle's law, we get}\\ {P}_{1}{V}_{1}={P}_{2}{V}_{2}\\ \Rightarrow 0.75\rho gA={P}_{2}(1-h)A\\ \Rightarrow 0.75\rho g=(0.75\rho g+h\rho g)(1-h)\\ \Rightarrow 0.75=(0.75+h)(1-h)\\ \Rightarrow h=0.25\text{m}\\ \text{h = 25 cm}\end{array}``
Page No 35: