NEET-XI-Physics

14: Oscillations

Which of the following function of time represent |a) simple harmonic,(b)periodic but not simple harmonic, and non-periodic motion? Give period for each case of periodic motion (to is any positive constant). nullnullnullnullnullnullnullnullnullnullnull page 2
  • #4-0
    Which of the following function of time represent |a) simple harmonic,(b)periodic but not simple harmonic, and non-periodic motion? Give period for each case of periodic motion (to is any positive constant).nullnullnullnullnullnullnullnullnullnullnullnull

      (1) (a) sin wt - cos wt (2) (b) sin3 wt (3) (c) 3 cos -2 cos (``\pi``/4-2 wt) (4) (d) cos wt + cos 3 wt + cos 5 wt

    (5) (e) ``e^{-w^2t^2}`` (6) (f) 1 + wt + w2t2. (1) (a) sin wt - cos wt (2) (b) sin3 wt (3) (c) 3 cos -2 cos (``\pi``/4-2 wt) (4) (d) cos wt + cos 3 wt + cos 5 wt

    (5) (e) ``e^{-w^2t^2}`` (6) (f) 1 + wt + w2t2.
    Ans : The function will represent a periodic motion, if it is identically repeated after a fixed interval of time and will represent S.H.M if it can be written uniquely in the form of a cos



      (1) ``\sin \omega t - \cos \omega t``

    =``\sin\omega t - \sin(\pi/2 -\omega t)``     ( as ``cos (\pi/2-\theta) = \sin \theta``)

    (Again (`` \sin A - \sin B = 2\sin \frac{A-B}{2} \cos\frac{A+B}{2}``)
    =``2 \cos \pi/4  \sin(\omega t - \pi/4)``

    = ``\sqrt{2}  \sin(\omega t - \pi/4)``
    ( shm equation ``x(t) = a\sin(\omega t + \alpha)``
    comparing with shm,
    A= ``\sqrt2``  and  Time period T = ``2\pi/\omega`` and phase angle = ``\pi/4``  or ``( 2\pi-\pi/4) = 7\pi/4``.



    (2) (3)
      (4) (5) (e) e-w2t2 . It is an exponential function which never repeats itself. Therefore it represents non-periodic motion.

    (6) (f) 1 + wt + w2t2 also represents non periodic motion. (1) ``\sin \omega t - \cos \omega t``

    =``\sin\omega t - \sin(\pi/2 -\omega t)``     ( as ``cos (\pi/2-\theta) = \sin \theta``)

    (Again (`` \sin A - \sin B = 2\sin \frac{A-B}{2} \cos\frac{A+B}{2}``)
    =``2 \cos \pi/4  \sin(\omega t - \pi/4)``

    = ``\sqrt{2}  \sin(\omega t - \pi/4)``
    ( shm equation ``x(t) = a\sin(\omega t + \alpha)``
    comparing with shm,
    A= ``\sqrt2``  and  Time period T = ``2\pi/\omega`` and phase angle = ``\pi/4``  or ``( 2\pi-\pi/4) = 7\pi/4``.



    (2) (3)
      (4) (5) (e) e-w2t2 . It is an exponential function which never repeats itself. Therefore it represents non-periodic motion.

    (6) (f) 1 + wt + w2t2 also represents non periodic motion.
  • #4-1
    (a) sin wt - cos wt
    Ans : ``\sin \omega t - \cos \omega t``

    =``\sin\omega t - \sin(\pi/2 -\omega t)``     ( as ``cos (\pi/2-\theta) = \sin \theta``)

    (Again (`` \sin A - \sin B = 2\sin \frac{A-B}{2} \cos\frac{A+B}{2}``)
    =``2 \cos \pi/4  \sin(\omega t - \pi/4)``

    = ``\sqrt{2}  \sin(\omega t - \pi/4)``
    ( shm equation ``x(t) = a\sin(\omega t + \alpha)``
    comparing with shm,
    A= ``\sqrt2``  and  Time period T = ``2\pi/\omega`` and phase angle = ``\pi/4``  or ``( 2\pi-\pi/4) = 7\pi/4``.



  • #4-2
    (b) sin3 wt
    Ans :
  • #4-3
    (c) 3 cos -2 cos (``\pi``/4-2 wt)
    Ans :
     
  • #4-4
    (d) cos wt + cos 3 wt + cos 5 wt

    Ans :
  • #4-5
    (e) ``e^{-w^2t^2}``
    Ans : (e) e-w2t2 . It is an exponential function which never repeats itself. Therefore it represents non-periodic motion.

  • #4-6
    (f) 1 + wt + w2t2.
    Ans : (f) 1 + wt + w2t2 also represents non periodic motion.