ICSE-VIII-Mathematics

16: Understanding Shapes (Including Polygons) Class 8 Maths

with Solutions - page 8
Qstn# C-15 Prvs-Qstn
  • #15
    In a quadrilateral ABCD, AO and BO are bisectors of angle A and angle B respectively. Show that:
    ∠AOB = 1/2 (∠C + ∠D)
    Ans : Given: AO and BO are the bisectors of ∠A and ∠B respectively.
    ∠1 = ∠4 and ∠3 = ∠5 ...(i)

    To prove: ∠AOB = 1/2 (∠C + ∠D)
    Proof:In quadrilateral ABCD
    ∠A + ∠B + ∠C + ∠D = 360°
    1/2 (∠A + ∠B + ∠C + ∠D) = 180° ...(ii)
    Now in ∆AOB
    ∠1 + ∠2 + ∠3 = 180° ...(iii)
    Equating equation (ii) and equation (iii), we get
    ∠1 + ∠2 + ∠3 = ∠A + ∠B + 1/2 (∠C + ∠D)
    ⇒ ∠1 + ∠2 + ∠3 = ∠1 + ∠3 + 1/2 (∠C + ∠D)
    ⇒ ∠2 = 1/2 (∠C + ∠D)
    ⇒ ∠AOB = 1/2 (∠C + ∠D)
    Hence proved.