ICSE-VIII-Mathematics

16: Understanding Shapes (Including Polygons) Class 8 Maths

with Solutions - page 5
Qstn# B-16 Prvs-QstnNext-Qstn
  • #16
    If the difference between the exterior angle of a n sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
    Ans : We know that sum of exterior angles of a polygon = 360°
    Each exterior angle of a regular polygon of 360°
    sides = 360˚/n
    And exterior angle of the regular polygon of (n + 1) sides = 360˚/(n + 1)
    ∴ 360˚/n - 360˚/(n + 1) = 12
    ⇒ 360 [1/n - 1/(n + 1)] = 12
    ⇒ 360[(n + 1 - n)/n(n + 1)] = 12
    ⇒ (30 × 1)/(n2 + n) = 12
    ⇒ 12(n2 + n) = 360˚
    ⇒ n2 + n = 36˚ (Dividing by 12)
    ⇒ n2 + n - 30 = 0
    ⇒ n2 + 6n - 5n - 30 = 0 {∵ -30 = 6 ×(-5) = 1= 6 - 5}
    ⇒ n(n + 6) - 5(n + 6) = 0
    ⇒ (n + 6)(n - 5) = 0
    Either n + 6 = 0, then n = - 6 which is not possible being negative
    Or, n - 5 = 0, then n = 5
    Hence, n = 5