ICSE-VIII-Mathematics

12: Algebraic Identities Class 8 Maths

with Solutions -
  • #2
    Use direct method to evaluate : (i) (x + 1) (x - 1) (ii) (2 + a)(2 - a) (iii) (3b - 1)(3b + 1) (iv) (4 + 5x)(4 - 5x) (ix) (z - 2/3)(z + 2/3) (v) (2a + 3)(2a - 3) (vi) (xy + 4)(xy - 4) (vii) (ab + x2)(ab -x2) (viii) (3x2 + 5y2)(3x2 - 5y2) (x) (3/5a + ½)(3/5a - ½) (xi) (0.5 - 2a)(0.5 + 2a) (xii) (a/2 - b/3)(a/2 + b/3)
    Ans : Note: (a + b)(a - b) = a2 - b2 (i) (x + 1)(x - 1)= (x)2 - (1)2
    = x2 - 1 (ii) (2 + a)/(2 - a)= (2)2 -
    (a)2
    = 4 - a2 (iii) (3b - 1)(3b + 1) = (3b)2 - (1)2
    = 9b2 - 1 (iv) (4 + 5x)(4 - 5x)
    = (4)2 - (5x)2
    = 16 - 25x2 (ix) (z - 2/3)(z + 2/3)
    = (z)2 - (2/3)2
    = z2 - 4/9 (v) (2a + 3)(2a - 3)
    = (2a)2 - (3)2
    = 4a2 - 9 (vi) (xy + 4)(xy - 4)
    = (xy)2 - (4)2
    = x2y2 - 16 (vii) (ab + x2) (ab - x2)
    = (ab)2 - (x2)2
    = a2b2 - x4 (viii) (3x2 + 5y2)(3x2 - 5y2)= (3x2)2 - (5y2)2
    = 9x4 - 25y4 (x) (3/5a + ½) (3/5a - ½)
    = (3/5a)2 - (1/2)2
    = 9/25a2 - ¼ (xi) (0.5 - 2a)(0.5 + 2a)
    = (0.5)2 - (2a)2
    = 0.25 - 4a2 (xii) (a/2 - b/3)(a/2 + b/3)
    = (a/2)2 - (b/3)2
    = a2/4 - b2/9
  • #2-i
    (x + 1) (x - 1)
    Ans : (x + 1)(x - 1)= (x)2 - (1)2
    = x2 - 1
  • #2-ii
    (2 + a)(2 - a)
    Ans : (2 + a)/(2 - a)= (2)2 -
    (a)2
    = 4 - a2
  • #2-iii
    (3b - 1)(3b + 1)
    Ans : (3b - 1)(3b + 1) = (3b)2 - (1)2
    = 9b2 - 1
  • #2-iv
    (4 + 5x)(4 - 5x)
    Ans : (4 + 5x)(4 - 5x)
    = (4)2 - (5x)2
    = 16 - 25x2
  • #2-ix
    (z - 2/3)(z + 2/3)
    Ans : (z - 2/3)(z + 2/3)
    = (z)2 - (2/3)2
    = z2 - 4/9
  • #2-v
    (2a + 3)(2a - 3)
    Ans : (2a + 3)(2a - 3)
    = (2a)2 - (3)2
    = 4a2 - 9
  • #2-vi
    (xy + 4)(xy - 4)
    Ans : (xy + 4)(xy - 4)
    = (xy)2 - (4)2
    = x2y2 - 16
  • #2-vii
    (ab + x2)(ab -x2)
    Ans : (ab + x2) (ab - x2)
    = (ab)2 - (x2)2
    = a2b2 - x4
  • #2-viii
    (3x2 + 5y2)(3x2 - 5y2)
    Ans : (3x2 + 5y2)(3x2 - 5y2)= (3x2)2 - (5y2)2
    = 9x4 - 25y4
  • #2-x
    (3/5a + ½)(3/5a - ½)
    Ans : (3/5a + ½) (3/5a - ½)
    = (3/5a)2 - (1/2)2
    = 9/25a2 - ¼
  • #2-xi
    (0.5 - 2a)(0.5 + 2a)
    Ans : (0.5 - 2a)(0.5 + 2a)
    = (0.5)2 - (2a)2
    = 0.25 - 4a2
  • #2-xii
    (a/2 - b/3)(a/2 + b/3)
    Ans : (a/2 - b/3)(a/2 + b/3)
    = (a/2)2 - (b/3)2
    = a2/4 - b2/9