ICSE-VIII-Mathematics
12: Algebraic Identities Class 8 Maths
- #3Evaluate: (i) (a + 1)(a - 1)(a2 + 1) (ii) (a + b)(a - b)(a2 + b2) (iii) (2a - b)(2a + b)(4a2 + b2) (iv) (3 - 2x)(3 + 2x)(9 + 4x2) (v) (3x - 4y)(3x + 4y)(9x2 + 16y2)Ans : (i) (a + 1)(a - 1)(a2 + 1)
= [
(a)2 - (1)2] (a2 + 1)
= (a2 - 1)(a2 + 1)
= (a2)2 - (1)2
= a4 - 1 (ii) (a + b)(a - b)(a2 + b2)
= (a2 - b2)(a2 + b2)
= (a2 - 1)(a2 + 1)
= (a2)2 - (1)2
= a4 - 1 (iii) (2a - b)(2a + b)(4a2 + b2)
= [(2a)2 -
(b)2] (4a2 + b2)
= (4a2 - b2)(4a2 + b2)
= (4a2)2 - (b2)2
= (16a4 - b4) (iv) (3 - 2x)(3 + 2x)(9 + 4x2)
= [(3)2 - (2x)2] (9 + 4x2)
= (9 - 4x2)(9 + 4x2)
= (9)2 - (4x2)2
= 81 - 16x4 (v) (3x - 4y)(3x + 4y)(9x2 + 16y2)
= [(3x)2 - (4y)2](9x2 + 16y2)
= (9x2 - 16y2)(9x2 + 16y2)
= (9x2)2 - (16y2)2
= 81x4 - 256y4
- #3-i(a + 1)(a - 1)(a2 + 1)Ans : (a + 1)(a - 1)(a2 + 1)
= [
(a)2 - (1)2] (a2 + 1)
= (a2 - 1)(a2 + 1)
= (a2)2 - (1)2
= a4 - 1
- #3-ii(a + b)(a - b)(a2 + b2)Ans : (a + b)(a - b)(a2 + b2)
= (a2 - b2)(a2 + b2)
= (a2 - 1)(a2 + 1)
= (a2)2 - (1)2
= a4 - 1
- #3-iii(2a - b)(2a + b)(4a2 + b2)Ans : (2a - b)(2a + b)(4a2 + b2)
= [(2a)2 -
(b)2] (4a2 + b2)
= (4a2 - b2)(4a2 + b2)
= (4a2)2 - (b2)2
= (16a4 - b4)
- #3-iv(3 - 2x)(3 + 2x)(9 + 4x2)Ans : (3 - 2x)(3 + 2x)(9 + 4x2)
= [(3)2 - (2x)2] (9 + 4x2)
= (9 - 4x2)(9 + 4x2)
= (9)2 - (4x2)2
= 81 - 16x4
- #3-v(3x - 4y)(3x + 4y)(9x2 + 16y2)Ans : (3x - 4y)(3x + 4y)(9x2 + 16y2)
= [(3x)2 - (4y)2](9x2 + 16y2)
= (9x2 - 16y2)(9x2 + 16y2)
= (9x2)2 - (16y2)2
= 81x4 - 256y4