CBSE-XI-Physics

05: Newton's Laws of Motion

with Solutions - page 5
Qstn# iv-16 Prvs-QstnNext-Qstn
  • #16
    Find the reading of the spring balance shown in figure (5-E6). The elevator is going up with an acceleration g/10, the pulley and the string are light and the pulley is smooth.
    Ans : Let the left and right blocks be A and B, respectively.
    And let the acceleration of the 3 kg mass relative to the elevator be 'a' in the downward direction.

    From the free-body diagram,
    `` {m}_{A}a=T-{m}_{A}g-\frac{{m}_{A}g}{10}...\left(1\right)``
    `` {m}_{B}a={m}_{B}g+\frac{{m}_{B}g}{10}-T...\left(2\right)``
    Adding both the equations, we get:
    `` a\left({m}_{A}+{m}_{B}\right)=\left({m}_{B}-{m}_{A}\right)g+\left({m}_{B}-{m}_{A}\right)\frac{g}{10}``
    Putting value of the masses,we get:
    `` 9a=\frac{33g}{10}``
    `` \Rightarrow \frac{a}{g}=\frac{11}{30}...\left(3\right)``
    Now, using equation (1), we get:
    `` T={m}_{A}\left(a+g+\frac{g}{10}\right)``
    The reading of the spring balance = `` \frac{2T}{g}=\frac{2}{g}{m}_{A}\left(a+g+\frac{g}{10}\right)``
    `` \Rightarrow 2\times 1.5\left(\frac{a}{g}+1+\frac{1}{10}\right)=3\left(\frac{11}{30}+1+\frac{1}{10}\right)``
    `` =4.4\,\mathrm{\,kg \,}``
    Page No 80: