CBSE-XI-Physics

02: Physics and Mathematics

with Solutions - page 2
  • #2
    Let
    A→andB→be the two vectors of magnitude 10 unit each. If they are inclined to the X-axis at angle 30° and 60° respectively, find the resultant.
    Ans : Angle between `` \stackrel{\to }{\mathrm{A}}\mathrm{and}\stackrel{\to }{\mathrm{B}}``, θ = 60° - 30° = 30°
    `` \left|\stackrel{\to }{\mathrm{A}}\right|=\left|\stackrel{\to }{\mathrm{B}}\right|=10\mathrm{units}
    \mathrm{The}\mathrm{magnitude}\mathrm{of}\mathrm{the}\mathrm{resultant}\mathrm{vector}\mathrm{is}\mathrm{given}\mathrm{by}
    \mathrm{R}=\sqrt{{A}^{2}+{A}^{2}+2AA\mathrm{cos}\theta }
    =\sqrt{{10}^{2}+{10}^{2}+2\times 10\times 10\times \mathrm{cos}30°}
    =\sqrt{200+200\mathrm{cos}30°}
    =\sqrt{200+200\times \frac{\sqrt{3}}{2}}
    =19.3\mathrm{units}``

    Let β be the angle between `` \stackrel{\to }{\mathrm{R}}\mathrm{and}\stackrel{\to }{\mathrm{A}}``.
    `` \therefore \mathrm{\beta }={\mathrm{tan}}^{-1}\left(\frac{A\mathrm{sin}30°}{A+A\mathrm{cos}30°}\right)
    \Rightarrow \mathrm{\beta }={\mathrm{tan}}^{-1}\left(\frac{10\mathrm{sin}30°}{10+10\mathrm{cos}30°}\right)
    \Rightarrow \mathrm{\beta }={\mathrm{tan}}^{-1}\left(\frac{1}{2+\sqrt{3}}\right)={\mathrm{tan}}^{-1}\left(\frac{1}{3.372}\right)
    \Rightarrow \mathrm{\beta }={\mathrm{tan}}^{-1}\left(0.26795\right)=15°``
    Angle made by the resultant vector with the X-axis = 15° + 30° = 45°
    ∴ The magnitude of the resultant vector is 17.3 and it makes angle of 45° with the X-axis.
    Page No 29: