ICSE-X-Mathematics

Previous Year Paper year:2020

with Solutions -

Note: Please signup/signin free to get personalized experience.

Note: Please signup/signin free to get personalized experience.

10 minutes can boost your percentage by 10%

Note: Please signup/signin free to get personalized experience.

 
  • #
    Section : A
    [40 Marks]
    Answer
    all questions from this Section.)
  • #1
  • #1-a [3]
    Solve the following quadratic equation:
    ``x^2 - 7x + 3 = 0 ``
    Give your answer correct to two decimal places.
    Ans : Given ``x^2 - 7x + 3 = 0 ``
    Comparing it with ``ax^2 + bx + c = 0 `` we get , ``a = 1, b = -7 `` and ``c = 3 ``
    We know, ``x = `` ``\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} ``
    ``x = `` ``\frac{7 \pm \sqrt{49-12}}{2} ``
    ``\Rightarrow x= `` ``\frac{7 \pm \sqrt{37}}{2} ``
    ``\Rightarrow x = `` ``\frac{7 \pm 6.08}{2} ``
    Therefore ``x = `` ``\frac{7+6.08}{2} `` ``= 6.54 `` or
    ``x = `` ``\frac{7 - 6.08}{2} `` ``= 0.46 ``
    Hence roots are ``6.54 `` and ``0.46 ``
  • #1-b [3]
    Given ``A = \begin{bmatrix} x & 3 \\ y & 3 \end{bmatrix} ``
    If ``A^2= 3 I ``, where ``I `` is the identity matrix of Order ``2 ``, find ``x `` and ``y ``.
    Ans : Given: ``A = \begin{bmatrix} x & 3 \\ y & 3 \end{bmatrix} `` and ``A^2 = 3I ``
    ``A^2 = \begin{bmatrix} x & 3 \\ y & 3 \end{bmatrix} \times \begin{bmatrix} x & 3 \\ y & 3 \end{bmatrix} ``
    ``\Rightarrow A^2 = \begin{bmatrix} x^2 + 3y & 3x+9 \\ xy+3y & 3y+9 \end{bmatrix} ``
    ``3I = 3 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} ``
    Comparing we get
    ``\begin{bmatrix} x^2 + 3y & 3x+9 \\ xy+3y & 3y+9 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} ``
    ``\Rightarrow 3x + 9 = 0 \Rightarrow x = - 3 ``
    Similarly, ``3y + 9 = 3 \Rightarrow y = - 2 ``
  • #1-c [4]
    Using ruler and compass construct a triangle ``ABC `` where ``AB = 3 `` cm, ``BC = 4 `` cm and ``\angle ABC = 90^{\circ} ``. Hence construct a circle circumscribing the triangle ``ABC ``. Measure and write down the radius of the circle.
    Ans : ``BC = 4 `` cm and ``AB = 3 `` cm
    Radius of the circle ``= 2.5 `` cm
    2020-08-02_22-17-08
  • #2
  • #2-a [3]
    Use factor theorem to factorize ``6x^3 + 17x^2 + 4x - 12 `` completely.
    Ans : Let ``f(x) = 6x^3 + 17x^2 + 4x - 12 ``
    By trial and error, let ``x = -2 ``
    Therefore ``f(-2) = 6(-8) + 17(4) + 4(-2) - 12 = -48 + 68 - 8 - 12 = 0 ``
    Hence we can say that ``(x+2) `` is a factor of ``f(x) ``
    Now,
    ``\begin{array}{r l l} x+2 ) & \overline{6x^3+ 17x^2 + 4x - 12} & (6x^2+5x-6 \\ (-) & 6x^3+12x^2 & \\ \hline & \hspace{1.0cm} 5x^2 + 4x & \\ (-) & \hspace{1.0cm} 5x^2 + 10x & \\ \hline & \hspace{2.0cm} -6x-12 & \\ (-) & \hspace{2.0cm} -6x - 12 & \\ \hline & \hspace{3.0cm} 0 & \end{array} ``
    Now factorize
    ``6x^2+5x-6 = 6x^2 +9x - 4x - 6 = 3x( 2x+3) - 2 ( 2x+3) = (3x-2)(2x+3) ``
    Therefore complete factorization is ``f(x) = (x+2)(3x-4)(2x+3) ``
  • #2-b [3]
    Solve the following in-equation and represent the solution set on the number line.
    ``\frac{3x}{5} `` ``< x+4 \leq `` ``\frac{x}{5} `` ``, x \in R ``
    Ans : ``\frac{3x}{5} `` ``< x+4 \leq `` ``\frac{x}{5} `` ``, x \in R ``
    First solve: ``\frac{3x}{5} `` ``+ 2 < x+4 ``
    ``\Rightarrow 3x + 10 < 5x + 20 ``
    ``\Rightarrow -10 < 2x ``
    ``\Rightarrow -5 < x ``
    Also solve ``x+4 \leq `` ``\frac{x}{2} `` ``+ 5 ``
    ``\Rightarrow 2x + 8 \leq x + 10 ``
    ``\Rightarrow x \leq 2 ``
    ``\therefore -5 < x \leq 2, x \in R ``
    Hence the solution set ``S = \{ x : x \in R, -5 < x \leq 2 \} ``
    2020-08-01_22-26-35
  • #2-c [4]
    Draw a histogram for the given data using graph paper.


    Weekly Wages (in Rs) No. of People
    3000-4000 4
    4000-5000 9
    5000-6000 18
    6000-7000 6
    7000-8000 7
    8000-9000 2
    9000-10000 4
    Ans : 2020-08-01_22-45-19
  • #3
  • #3-a
    In the figure given below, ``O `` is the center of the circle and ``AB `` is a diameter, if ``AC = BD `` and ``\angle ADC = 72^{\circ} ``, find
    [3]2020-08-01_22-19-54
    i) ``\angle ABC ``
    ii) ``\angle BAD ``
    iii) ``\angle ABD ``
    Ans : i) We know, The angle which an arc of a circle subtends at the center is double that which it subtends on any point of the part of the circumference.
    Therefore ``\angle ABC = `` ``\frac{1}{2} `` ``\angle AOC = `` ``\frac{1}{2} `` ``(72) = 36^{\circ} ``
    ii) Given ``AC = BD ``
    The chord of the same length subtend the same angle
    ``\therefore \angle BAD = 36^{\circ} ``
    iii) ``\angle ABD = 90^{\circ} `` (semi circular angles are ``90^{\circ} ``)
    In ``\triangle ABD, \angle ABD = 180^{\circ} - 36^{\circ} - 90^{\circ} = 54^{\circ} ``
  • #3-b [3]
    Prove that
    ``\frac{\sin A}{1 + \cot A} `` ``- `` ``\frac{\cos A}{1+\tan A} `` ``= \sin A - \cos A ``
    Ans : LHS ``= `` ``\frac{\sin A}{1 + \cot A} `` ``- `` ``\frac{\cos A}{1 + \tan A} ``
    ``= `` ``\frac{\sin^2 A}{\sin A + \cos A} `` ``- `` ``\frac{\cos^2 A}{\cos A + \sin A} ``
    ``= `` ``\frac{\sin^2 A - \cos^2 A}{\sin A + \cos A} ``
    ``= `` ``\frac{(\sin A - \cos A )(\sin A + \cos A )}{\sin A + \cos A } ``
    ``= \sin A - \cos A = `` RHS Hence proved.
  • #3-c [4]
    In what ratio is the line joining ``P(5, 3) `` and ``Q( -5, 3) `` is divided by y-axis. Also find the coordinates of the point of intersection.
    Ans : 2020-08-01_22-12-55Let the point of intersection be ``(0, b) ``
    Let the ratio of in which the line segment gets divided be ``k:1 ``
    Using section formula
    ``x = `` ``\frac{mx_2+nx_1}{m+n} `` and ``y = `` ``\frac{my_2+ny_1}{m+n} ``
    ``\therefore 0 = `` ``\frac{-5k+5}{k+1} `` ``\Rightarrow -5k + 5 = 0 \Rightarrow k = 1 ``
    Hence the ratio is ``1:1 ``
    Therefore ``b = `` ``\frac{3+3}{1+1} `` ``= 3 ``
    Therefore the coordinates of the point of intersection is ``(0, 3) ``
    ``\\ ``
  • #4