ICSE-X-Mathematics

Previous Year Paper year:2020

with Solutions - page 2

Note: Please signup/signin free to get personalized experience.

Note: Please signup/signin free to get personalized experience.

10 minutes can boost your percentage by 10%

Note: Please signup/signin free to get personalized experience.

 
  • #4-a [3]
    A solid spherical ball of radius ``6 `` cm is melted and recasted in ``64 `` identical spherical marbles. Find the radius of each marble.
    Ans : Let ``R `` be the radius of spherical ball and ``r `` be the radius of the spherical marble
    Volume of spherical ball ``= `` ``\frac{4}{3} `` ``\pi R^3 = `` ``\frac{4}{3} `` ``\pi (6)^3 ``
    Volume of spherical marble ``= `` ``\frac{4}{3} `` ``\pi r^3 ``
    ``\therefore `` ``\frac{4}{3} `` ``\pi (6)^3 = 64 \times `` ``\frac{4}{3} `` ``\pi r^3 ``
    ``r^3 = `` ``\frac{6^3}{64} `` ``= `` ``\frac{6^3}{4^3} ``
    ``\Rightarrow r = `` ``\frac{6}{4} `` ``= `` ``\frac{3}{2} `` cm
  • #4-b [3]
    Each of the letters of the word ``'AUTH
    i) a vowel
    ii) One of the first ``9 `` letters of the English alphabet which appears in a given word
    iii) One of the last ``9 `` letters of the English alphabet which appears in a given word
    Ans : First 9 letters: ``A, B, C, D, E, F, G, H, I ``
    Last 9 letters: ``R,S, T, U, V, W, X, Y, Z ``
    Total outcomes ``= 10 ``
    i) No. of vowels ``= 5 ``
    Therefore probability ``P(Vowels) = `` ``\frac{5}{10} `` ``= `` ``\frac{1}{2} ``
    ii) There are ``4 `` probable outcomes
    Therefore probability ``P( \ first \ 9 \ letters\ ) = `` ``\frac{4}{10} `` ``= `` ``\frac{2}{5} ``
    iii) There are ``5 `` probable outcomes
    Therefore probability ``P( \ last \ 9 \ letters \ ) = `` ``\frac{5}{10} `` ``= `` ``\frac{1}{2} ``
  • #4-c [4]
    Mr. Bedi visits the market and buys the following articles:
    Medicines costing Rs. ``950 ``, GST @ ``5\% ``
    A pair of shoes costing Rs. ``3000 ``, GST @ ``18\% ``
    A laptop bag costing Rs ``1000 `` with a discount or ``30\% ``, GST @ ``18\% ``
    i) Calculate the total amount of GST paid
    ii) The total bill amount including GST paid by Mr. Bedi
    Ans :

    Article Cost ( Rs.) Final Cost (Rs.) GST Rate GST ( Rs.) Final Price (Rs.)
    Medicines 950 950 5% 47.50 997.50
    Shoes 3000 3000 18% 540 3540
    Laptop Bag 1000 @ 30% discount 700 18% 126 829
    Total (Rs.) 713.50 5363.50

    Therefore
    i) Calculate the total amount of GST paid ``= 713.50 `` Rs.
    ii) The total bill amount including GST paid by Mr. Bedi ``= 5363.50 `` Rs.
  • #
    Section : B
    [40 Marks]
    (Attempt any
    fourquestions from this Section.)
  • #5
  • #5-a [3]
    A company with ``500 `` shares of nominal value Rs. ``120 `` declares and annual dividend of ``15\% ``. Calculate:
    i) the total amount of dividend paid by the company
    ii) annual income of Mr. Sharma who holds ``80 `` shares of the company.
    If the return percent of Mr. Sharma for his shares is ``10\% ``, find the market value of each share.
    Ans : Number of shares ``= 500 ``
    Nominal Value ``= 120 `` Rs.
    Dividend ``= 15\% ``
    i) Dividend ``= n \times NV \times `` ``\frac{div \%}{100} `` ``= 500 \times 120 \times `` ``\frac{15}{100} `` ``= 9000 `` Rs.
    ii) ``n = 80 `` shares
    Dividend ``= 80 \times 120 \times `` ``\frac{5}{100} `` ``= 1440 `` Rs.
    Return ``\% = `` ``\frac{Annual \ Income }{Investment} `` ``\times 100 ``
    ``\Rightarrow 10 = `` ``\frac{1440}{I} `` ``\times 100 ``
    ``\Rightarrow I = `` ``\frac{1440 \times 100}{10} `` ``= 14400 `` Rs.
    Therefore Market Value ``= `` ``\frac{14400}{80} `` ``= 180 `` Rs.
  • #5-b [3]
    The mean of the following data is ``16 ``. Calculate the value of ``f ``.


    Marks 5 10 15 20 25
    No. of Students 3 7 ``f `` 9 6
    Ans :

    Marks ``( x) `` No. of Students ``(f) `` ``fx ``
    5 3 15
    10 7 70
    15 ``f `` ``15f ``
    20 9 180
    25 6 150
    ``\Sigma f = 25 + f `` ``\Sigma fx = 415 + 15f ``

    Given: Mean ``= 16 ``
    We know ``\overline{x} = `` ``\frac{\Sigma fx}{\Sigma f} ``
    ``\Rightarrow 16 = `` ``\frac{415+15f}{25+f} ``
    ``\Rightarrow 400 + 16f = 415 + 15f ``
    ``\Rightarrow f = 15 ``
  • #5-c [4]
    The ``4^{th}, 6^{th} `` and the last term of a geometric progression are ``10, 40 `` and ``640 `` respectively. If the common ratio is positive, find the first term, common ration and the number of terms of the series.
    Ans : ``4^{th} `` term ``= 10 `` ``6^{th} `` term ``= 40 `` Last term ``= 640 ``
    We know, ``t_n = ar^{n-1} ``
    ``\therefore 10 = a r^{4-1} `` ``\Rightarrow 10 = ar^3 `` ... ... ... ... ... i)
    Similarly, ``40 = a r^{6-1} `` ``\Rightarrow 40 = ar^5 `` ... ... ... ... ... ii)
    Dividing ii) by i) we get
    ``\frac{ar^5}{ar^3} `` ``= `` ``\frac{40}{10} ``
    ``\Rightarrow r^2 = 4 `` ``\Rightarrow r = 2 ``
    Using i) we get ``10 = a (2)^3 ``
    ``\Rightarrow a = `` ``\frac{10}{8} `` ``= `` ``\frac{5}{4}``
    We know that ``t_n = a r^{n-1} ``
    ``\therefore 640 = `` ``\frac{5}{4} `` ``2^{n-1} ``
    ``\Rightarrow 2^{n-1} = \frac{640 \times 4}{5} ``
    ``\Rightarrow 2^{n-1} = 512 ``
    ``\Rightarrow 2^{n-1} = 2^9 ``
    ``\Rightarrow n = 10 ``
    ``\\ ``
  • #6
  • #6-a [3]
    If ``A = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} `` and ``B = \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix} ``. Find: ``A^2 - 2AB + B^2 ``
    Ans : Given
    ``A = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} `` and ``B = \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix} ``
    ``A^2 = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} \times \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 20 & 1 \end{bmatrix} ``
    ``B^2 = \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 18 & -8 \\ -4 & 2 \end{bmatrix} ``
    ``AB = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} \times \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -12 & 6 \\ -19 & 10 \end{bmatrix} ``
    ``\therefore A^2 - 2AB + B^2 = \begin{bmatrix} 9 & 0 \\ 20 & 1 \end{bmatrix} - 2 \begin{bmatrix} -12 & 6 \\ -19 & 10 \end{bmatrix} + \begin{bmatrix} 18 & -8 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 51 & -20 \\ 54 & -17 \end{bmatrix} ``
  • #6-b [3]
    2020-08-02_18-07-10In the given figure ``AB = 9 `` cm, ``PA = 7.5 `` cm and ``PC = 5 `` cm
    Chord ``AD `` and ``BC `` intersect at ``P ``.
    i) Prove that ``\triangle PAB \sim \triangle PCD ``
    ii) Find the length of ``CD ``
    iii) Find area of ``\triangle PAB : `` area of ``\triangle PCD ``
    Ans : 2020-08-02_18-07-10
    i) Consider ``\triangle PAB `` and ``\triangle PCD ``
    ``\angle BPA = \angle DPC `` ( Vertically opposite angles)
    ``\angle ABC = \angle ADC `` (angles subtended by an arc on the circumference are equal)
    ``\therefore \triangle PAB \sim \triangle PCD `` (By AA similarity criterion)
    ii) Since ``\triangle PAB \sim \triangle PCD ``
    ``\Rightarrow `` ``\frac{PA}{PC} `` ``= `` ``\frac{AB}{CD} `` ``= `` ``\frac{PB}{PD} ``
    ``\Rightarrow `` ``\frac{7.5}{5} `` ``= `` ``\frac{9}{CD} ``
    ``\Rightarrow CD = `` ``\frac{5 \times 9}{7.5} `` ``= 6 `` cm
    iii) ``\frac{ar. of \triangle PAB}{ar. of \triangle PCD} `` ``= `` ``\frac{9^2}{6^2} `` ``= \frac{9}{4} ``
  • #6-c [4]
    From the top of a cliff, the angle of depression of the top and bottom of a tower are observed to be ``45^{\circ} `` and ``60^{\circ} `` respectively. If the height of the tower is ``20 `` m, Find:
    i) the height of the cliff
    ii) the distance between the cliff and the tower.
    Ans : 2020-08-02_18-15-12
    In ``\triangle ABC ``
    ``\tan 60^{\circ} = `` ``\frac{h}{x} `` ``\Rightarrow \sqrt{3} = `` ``\frac{h}{x} `` ``\Rightarrow h = \sqrt{3} x `` ... ... ... ... ... i)
    In ``\triangle CDE ``
    ``\tan 45^{\circ} = `` ``\frac{h-20}{x} `` ``\Rightarrow 1 = `` ``\frac{h-20}{x} `` ``\Rightarrow x = h - 20 `` ... ... ... ... ... ii)
    Substituting ``x = \sqrt{3}x - 20 ``
    ``\Rightarrow ( \sqrt{3} -1 ) x = 20 ``
    ``\Rightarrow x = `` ``\frac{20}{\sqrt{3} -1} `` ``\times `` ``\frac{\sqrt{3}+1}{\sqrt{3}+1} `` ``= 10 ( 1.732+1) = 27.32 `` m
    ``\therefore h = \sqrt{3} x = 1.732 \times 27.32 = 47.32 `` m
    i) the height of the cliff ``= 47.32 `` m
    ii) the distance between the cliff and the tower ``= 27.32 `` m
    ``\\ ``
  • #7
  • #7-a [3]
    Find the value of ``'p' `` is the lines ``5x - 3y + 2 = 0 `` and ``6x - py + 7 = 0 `` are perpendicular to each other. Hence find the equation of a line passing through ``(-2, -1) `` and parallel to ``6x - py + 7 = 0 ``.
    Ans : Given ``5x - 3y + 2 = 0 \Rightarrow 3y = 5x + 2 \Rightarrow y = `` ``\frac{5}{3} `` ``x + `` ``\frac{2}{3} ``
    Therefore slope ``m_1 = `` ``\frac{5}{3} ``
    Similarly, ``6x - py + 7 = 0 \Rightarrow py = 6x + 7 \Rightarrow y = `` ``\frac{6}{p} `` ``x + `` ``\frac{7}{p} ``
    Therefore slope ``m_2 = `` ``\frac{6}{p} ``
    We know ``m_1 m_2 = - 1 ``
    ``\Rightarrow `` ``\frac{5}{7} `` ``\times `` ``\frac{6}{p} `` ``= -1 \Rightarrow p = -10 ``
    Therefore slope ``m_2 = `` ``\frac{6}{-10} `` ``= - `` ``\frac{3}{5} ``
    Therefore equation of line
    ``(y+1) = - `` ``\frac{3}{5} `` ``( x + 2) ``
    ``\Rightarrow 5y + 5 = -3x - 6 ``
    ``\Rightarrow 3x + 5y + 11 = 0 ``
  • #7-b [3]
    Using properties of proportion find ``x:y `` given ``\frac{x^2 + 2x}{2x + 4} `` ``= `` ``\frac{y^2 + 3y}{3y + 9} ``
    Ans : ``\frac{x^2 + 2x}{2x + 4} `` ``= `` ``\frac{y^2 + 3y}{3y + 9} ``
    Applying componendo and dividendo
    ``\frac{x^2 + 2x + 2x + 4}{x^2 + 2x - 2x - 4} `` ``= `` ``\frac{y^2 + 3y + 3y + 9}{y^2 + 3y -3y - 9} ``
    ``\Rightarrow `` ``\frac{x^2 + 4x + 4}{x^2 - 4} `` ``= `` ``\frac{y^2 + 6y + 9}{y^2 - 9} ``
    ``\Rightarrow `` ``\frac{(x+2)^2}{(x+2)(x-2)} `` ``= `` ``\frac{(y+3)^2}{(y+3)(y-3)} ``
    ``\Rightarrow `` ``\frac{x+2}{x-2} `` ``= `` ``\frac{y+3}{y-3} ``
    Applying componendo and dividendo
    ``\frac{x+2 + x - 2}{x+2 -x+2} `` ``= `` ``\frac{y+3 + y - 3}{y+3-y+3} ``
    ``\Rightarrow `` ``\frac{2x}{4} `` ``= `` ``\frac{2y}{6} ``
    ``\Rightarrow `` ``\frac{x}{y} `` ``= `` ``\frac{2}{3} ``
    ``\therefore x : y = 2:3 ``