NEET-XII-Physics
20: dispersion and Spectra
- #8-athere is no net angular dispersion, and (b) there is no net deviation in the yellow ray.
Figure (b) there is no net deviation in the yellow ray.
FigureAns : For zero angular dispersion, we have:
δt - δt = 0 = 2(μvc -1)A - (μvf - 1)A'
`` \Rightarrow \frac{A\text{'}}{A}=\frac{2({\mu }_{\,\mathrm{\,vf\,}}-1)}{({\mu }_{vc}-1)}``
`` =\frac{2({\mu }_{r}-{\mu }_{r})}{({\mu }_{r}-\mu )}`` (b) For zero deviation in the yellow ray, δy = 0.
⇒ 2(μcy - 1)A = (μfy - 1)A
`` \Rightarrow \frac{A\text{'}}{A}=\frac{2({\mu }_{\,\mathrm{\,cy\,}}-1)}{({\mu }_{\,\mathrm{\,fy\,}}-1)}``
`` =\frac{2({\mu }_{y}-1)}{(\mu {\text{'}}_{y}-1)}``
Page No 442:
Page No 443: (b) For zero deviation in the yellow ray, δy = 0.
⇒ 2(μcy - 1)A = (μfy - 1)A
`` \Rightarrow \frac{A\text{'}}{A}=\frac{2({\mu }_{\,\mathrm{\,cy\,}}-1)}{({\mu }_{\,\mathrm{\,fy\,}}-1)}``
`` =\frac{2({\mu }_{y}-1)}{(\mu {\text{'}}_{y}-1)}``
Page No 442:
Page No 443:
- #8-bthere is no net deviation in the yellow ray.
FigureAns : For zero deviation in the yellow ray, δy = 0.
⇒ 2(μcy - 1)A = (μfy - 1)A
`` \Rightarrow \frac{A\text{'}}{A}=\frac{2({\mu }_{\,\mathrm{\,cy\,}}-1)}{({\mu }_{\,\mathrm{\,fy\,}}-1)}``
`` =\frac{2({\mu }_{y}-1)}{(\mu {\text{'}}_{y}-1)}``
Page No 442:
Page No 443: