NEET-XII-Physics

17: Light Waves

with Solutions - page 8
Qstn# iv-36 Prvs-QstnNext-Qstn
  • #36
    A parallel beam of light of wavelength 560 nm falls on a thin film of oil (refractive index = 1.4). What should be the minimum thickness of the film so that it strongly reflects the light?
    Ans : Given:
    Wavelength of light used, `` \,\mathrm{\,\lambda \,}=560\times {10}^{-9}\,\mathrm{\,m\,}``
    Refractive index of the oil film, `` \,\mathrm{\,\mu \,}=1.4``
    Let the thickness of the film for strong reflection be t.
    The condition for strong reflection is
    `` 2\,\mathrm{\,\mu \,}t=\left(2n+1\right)\frac{\lambda }{2}``
    `` \Rightarrow t=\left(2n+1\right)\frac{\lambda }{4\,\mathrm{\,\mu \,}}``
    where n is an integer.
    For minimum thickness, putting n = 0, we get:
    `` t=\frac{\lambda }{4\,\mathrm{\,\mu \,}}``
    `` =\frac{560\times {10}^{-9}}{4\times 1.4}``
    `` ={10}^{-7}\,\mathrm{\,m\,}=100\,\mathrm{\,nm\,}``
    Therefore, the minimum thickness of the oil film so that it strongly reflects the light is 100 nm.
    Page No 383: