NEET-XII-Physics

17: Light Waves

with Solutions - page 6
Qstn# iv-23 Prvs-QstnNext-Qstn
  • #23
    Consider the situation of the previous problem. If the mirror reflects only 64% of the light energy falling on it, what will be the ratio of the maximum to the minimum intensity in the interference pattern observed on the screen?
    Ans : Given:
    The mirror reflects 64% of the energy or intensity of light.
    Let intensity of source = I1.
    And intensity of light after reflection from the mirror = I2.
    Let a1 and a2 be corresponding amplitudes of intensity I1 and I2.
    According to the question,
    `` {I}_{2}=\frac{{I}_{1}\times 64}{100}``
    `` \Rightarrow \frac{{I}_{2}}{{I}_{1}}=\frac{64}{100}=\frac{16}{25}``
    `` \,\mathrm{\,And\,}\frac{{I}_{2}}{{I}_{1}}=\frac{{{a}_{2}}^{2}}{{{a}_{1}}^{2}}``
    `` \Rightarrow \frac{{a}_{2}}{{a}_{1}}=\frac{4}{5}``
    `` \,\mathrm{\,We\,}\,\mathrm{\,know\,}\text{that}\frac{{I}_{\,\mathrm{\,max\,}}}{{I}_{\,\mathrm{\,min\,}}}=\frac{{\left({a}_{1}+{a}_{2}\right)}^{2}}{{\left({a}_{1}-{a}_{2}\right)}^{2}}``
    `` =\frac{{\left(5+4\right)}^{2}}{{\left(5-4\right)}^{2}}``
    `` {I}_{\,\mathrm{\,max\,}}:{I}_{\,\mathrm{\,min\,}}=81:1``
    Hence, the required ratio is 81 : 1.
    Page No 382: