NEET-XII-Physics

17: Light Waves

with Solutions - page 4
Qstn# iv-16-a Prvs-QstnNext-Qstn
  • #16-a
    What would be the fringe-width? (b) At what distance from the centre will the first maximum be located?
    Ans : We know that fringe width is given by
    `` \beta =\frac{\lambda D}{d}``
    `` \Rightarrow \beta =\frac{590\times {10}^{-9}\times 1}{12\times {10}^{-4}}``
    `` =4.9\times {10}^{-4}\,\mathrm{\,m\,}`` (b) When both the mica and polystyrene strips are fitted before the slits, the optical path changes by
    `` ∆x=\left({\,\mathrm{\,\mu \,}}_{\,\mathrm{\,m\,}}-1\right)t-\left({\,\mathrm{\,\mu \,}}_{\,\mathrm{\,p\,}}-1\right)t``
    `` =\left({\,\mathrm{\,\mu \,}}_{\,\mathrm{\,m\,}}-{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,p\,}}\right)t``
    `` =\left(1.58-1.55\right)\times \left(0.5\right)\left({10}^{-3}\right)``
    `` =\left(0.015\right)\times {10}^{-3}\,\mathrm{\,m\,}``
    ∴ Number of fringes shifted, n = `` \frac{∆x}{\lambda }``.
    `` \Rightarrow n=\frac{0.015\times {10}^{-3}}{590\times {10}^{-9}}=25.43``
    ∴ 25 fringes and 0.43th of a fringe.
    ⇒ In which 13 bright fringes and 12 dark fringes and 0.43th of a dark fringe.
    So, position of first maximum on both sides is given by
    On one side,
    `` x=\left(0.43\right)\times 4.91\times {10}^{-4}\left(\because \beta =4.91\times {10}^{-4}\,\mathrm{\,m\,}\right)``
    `` =0.021\,\mathrm{\,cm\,}``
    `` ``
    `` ``
    On the other side,
    `` x\text{'}=\left(1-0.43\right)\times 4.91\times {10}^{-4}``
    `` =0.028\,\mathrm{\,cm\,}``
    Page No 381:
  • #16-b
    At what distance from the centre will the first maximum be located?
    Ans : When both the mica and polystyrene strips are fitted before the slits, the optical path changes by
    `` ∆x=\left({\,\mathrm{\,\mu \,}}_{\,\mathrm{\,m\,}}-1\right)t-\left({\,\mathrm{\,\mu \,}}_{\,\mathrm{\,p\,}}-1\right)t``
    `` =\left({\,\mathrm{\,\mu \,}}_{\,\mathrm{\,m\,}}-{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,p\,}}\right)t``
    `` =\left(1.58-1.55\right)\times \left(0.5\right)\left({10}^{-3}\right)``
    `` =\left(0.015\right)\times {10}^{-3}\,\mathrm{\,m\,}``
    ∴ Number of fringes shifted, n = `` \frac{∆x}{\lambda }``.
    `` \Rightarrow n=\frac{0.015\times {10}^{-3}}{590\times {10}^{-9}}=25.43``
    ∴ 25 fringes and 0.43th of a fringe.
    ⇒ In which 13 bright fringes and 12 dark fringes and 0.43th of a dark fringe.
    So, position of first maximum on both sides is given by
    On one side,
    `` x=\left(0.43\right)\times 4.91\times {10}^{-4}\left(\because \beta =4.91\times {10}^{-4}\,\mathrm{\,m\,}\right)``
    `` =0.021\,\mathrm{\,cm\,}``
    `` ``
    `` ``
    On the other side,
    `` x\text{'}=\left(1-0.43\right)\times 4.91\times {10}^{-4}``
    `` =0.028\,\mathrm{\,cm\,}``
    Page No 381: