NEET-XII-Physics

17: Light Waves

with Solutions - page 3
Qstn# iv-2 Prvs-QstnNext-Qstn
  • #2
    The wavelength of sodium light in air is 589 nm. (a) Find its frequency in air. (b) Find its wavelength in water (refractive index = 1.33). (c) Find its frequency in water. (d) Find its speed in water. (a) Find its frequency in air. (b) Find its wavelength in water (refractive index = 1.33). (c) Find its frequency in water. (d) Find its speed in water.
    Ans : Given:
    Wavelength of sodium light in air, `` {\lambda }_{\,\mathrm{\,a\,}}=589\,\mathrm{\,nm\,}=589\times {10}^{-9}\,\mathrm{\,m\,}``
    Refractive index of water, μw= 1⋅33
    We know that `` f=\frac{c}{\lambda }``,
    `` \,\mathrm{\,where\,}c=\,\mathrm{\,speed\,}\,\mathrm{\,of\,}\,\mathrm{\,light\,}=3\times {10}^{8}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}``
    f = frequency
    λ = wavelength (a) Frequency in air, `` {f}_{\,\mathrm{\,air\,}}=\frac{c}{{\lambda }_{\,\mathrm{\,a\,}}}``
    `` {f}_{\,\mathrm{\,air\,}}=\frac{3\times {10}^{8}}{589\times {10}^{-9}}``
    `` =5.09\times {10}^{14}\,\mathrm{\,Hz\,}`` (b) Let wavelength of sodium light in water be `` {\lambda }_{\,\mathrm{\,w\,}}``.
    We know that
    `` \frac{{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,a\,}}}{{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,w\,}}}=\frac{{\lambda }_{\,\mathrm{\,\omega \,}}}{{\lambda }_{\,\mathrm{\,a\,}}}``,
    where μa is the refractive index of air which is equal to 1 and
    λw is the wavelength of sodium light in water.
    `` \Rightarrow \frac{1}{1.33}=\frac{{\lambda }_{\,\mathrm{\,\omega \,}}}{589\times {10}^{-9}}``
    `` \Rightarrow {\lambda }_{\,\mathrm{\,\omega \,}}=443\,\mathrm{\,nm\,}`` (c) Frequency of light does not change when light travels from one medium to another.
    `` \therefore {f}_{\,\mathrm{\,\omega \,}}={f}_{\,\mathrm{\,a\,}}``
    `` =5.09\times {10}^{14}\,\mathrm{\,Hz\,}`` (d) Let the speed of sodium light in water be `` {\nu }_{\,\mathrm{\,\omega \,}}``
    and speed in air, va = c.
    Using `` \frac{{\mu }_{\,\mathrm{\,a\,}}}{{\mu }_{\,\mathrm{\,\omega \,}}}=\frac{{\nu }_{\,\mathrm{\,\omega \,}}}{{\nu }_{\,\mathrm{\,a\,}}}``, we get:
    `` {\nu }_{\,\mathrm{\,\omega \,}}=\frac{{\mu }_{\,\mathrm{\,a\,}}c}{{\mu }_{\,\mathrm{\,\omega \,}}}``
    `` =\frac{3\times {10}^{8}}{\left(1.33\right)}=2.25\times {10}^{8}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}``
    Page No 380: (a) Frequency in air, `` {f}_{\,\mathrm{\,air\,}}=\frac{c}{{\lambda }_{\,\mathrm{\,a\,}}}``
    `` {f}_{\,\mathrm{\,air\,}}=\frac{3\times {10}^{8}}{589\times {10}^{-9}}``
    `` =5.09\times {10}^{14}\,\mathrm{\,Hz\,}`` (b) Let wavelength of sodium light in water be `` {\lambda }_{\,\mathrm{\,w\,}}``.
    We know that
    `` \frac{{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,a\,}}}{{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,w\,}}}=\frac{{\lambda }_{\,\mathrm{\,\omega \,}}}{{\lambda }_{\,\mathrm{\,a\,}}}``,
    where μa is the refractive index of air which is equal to 1 and
    λw is the wavelength of sodium light in water.
    `` \Rightarrow \frac{1}{1.33}=\frac{{\lambda }_{\,\mathrm{\,\omega \,}}}{589\times {10}^{-9}}``
    `` \Rightarrow {\lambda }_{\,\mathrm{\,\omega \,}}=443\,\mathrm{\,nm\,}`` (c) Frequency of light does not change when light travels from one medium to another.
    `` \therefore {f}_{\,\mathrm{\,\omega \,}}={f}_{\,\mathrm{\,a\,}}``
    `` =5.09\times {10}^{14}\,\mathrm{\,Hz\,}`` (d) Let the speed of sodium light in water be `` {\nu }_{\,\mathrm{\,\omega \,}}``
    and speed in air, va = c.
    Using `` \frac{{\mu }_{\,\mathrm{\,a\,}}}{{\mu }_{\,\mathrm{\,\omega \,}}}=\frac{{\nu }_{\,\mathrm{\,\omega \,}}}{{\nu }_{\,\mathrm{\,a\,}}}``, we get:
    `` {\nu }_{\,\mathrm{\,\omega \,}}=\frac{{\mu }_{\,\mathrm{\,a\,}}c}{{\mu }_{\,\mathrm{\,\omega \,}}}``
    `` =\frac{3\times {10}^{8}}{\left(1.33\right)}=2.25\times {10}^{8}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}``
    Page No 380:
  • #2-a
    Find its frequency in air.
    Ans : Frequency in air, `` {f}_{\,\mathrm{\,air\,}}=\frac{c}{{\lambda }_{\,\mathrm{\,a\,}}}``
    `` {f}_{\,\mathrm{\,air\,}}=\frac{3\times {10}^{8}}{589\times {10}^{-9}}``
    `` =5.09\times {10}^{14}\,\mathrm{\,Hz\,}``
  • #2-b
    Find its wavelength in water (refractive index = 1.33).
    Ans : Let wavelength of sodium light in water be `` {\lambda }_{\,\mathrm{\,w\,}}``.
    We know that
    `` \frac{{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,a\,}}}{{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,w\,}}}=\frac{{\lambda }_{\,\mathrm{\,\omega \,}}}{{\lambda }_{\,\mathrm{\,a\,}}}``,
    where μa is the refractive index of air which is equal to 1 and
    λw is the wavelength of sodium light in water.
    `` \Rightarrow \frac{1}{1.33}=\frac{{\lambda }_{\,\mathrm{\,\omega \,}}}{589\times {10}^{-9}}``
    `` \Rightarrow {\lambda }_{\,\mathrm{\,\omega \,}}=443\,\mathrm{\,nm\,}``
  • #2-c
    Find its frequency in water.
    Ans : Frequency of light does not change when light travels from one medium to another.
    `` \therefore {f}_{\,\mathrm{\,\omega \,}}={f}_{\,\mathrm{\,a\,}}``
    `` =5.09\times {10}^{14}\,\mathrm{\,Hz\,}``
  • #2-d
    Find its speed in water.
    Ans : Let the speed of sodium light in water be `` {\nu }_{\,\mathrm{\,\omega \,}}``
    and speed in air, va = c.
    Using `` \frac{{\mu }_{\,\mathrm{\,a\,}}}{{\mu }_{\,\mathrm{\,\omega \,}}}=\frac{{\nu }_{\,\mathrm{\,\omega \,}}}{{\nu }_{\,\mathrm{\,a\,}}}``, we get:
    `` {\nu }_{\,\mathrm{\,\omega \,}}=\frac{{\mu }_{\,\mathrm{\,a\,}}c}{{\mu }_{\,\mathrm{\,\omega \,}}}``
    `` =\frac{3\times {10}^{8}}{\left(1.33\right)}=2.25\times {10}^{8}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}``
    Page No 380: