NEET-XII-Physics
11: Gravitation
- #20The gravitational potential in a region is given by V = 20 N kg-1 (x + y). (a) Show that the equation is dimensionally correct. (b) Find the gravitational field at the point (x, y). Leave your answer in terms of the unit vectors
i→, j→, k→. (c) Calculate the magnitude of the gravitational force on a particle of mass 500 g placed at the origin.Ans : (a) `` V=\left(\frac{20\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\left(x+y\right)``
`` \left[\frac{\,\mathrm{\,GM\,}}{\,\mathrm{\,R\,}}\right]=\left[\frac{{\,\mathrm{\,MLT\,}}^{-2}}{\,\mathrm{\,M\,}}\right]\left[\,\mathrm{\,L\,}\right]``
`` \Rightarrow \left[\frac{{\,\mathrm{\,M\,}}^{-1}{\,\mathrm{\,L\,}}^{3}{\,\mathrm{\,T\,}}^{-2}{\,\mathrm{\,M\,}}^{1}}{\,\mathrm{\,L\,}}\right]=\left[\frac{{\,\mathrm{\,ML\,}}^{2}{\,\mathrm{\,T\,}}^{-2}}{\,\mathrm{\,M\,}}\right]``
`` \Rightarrow \left[{\,\mathrm{\,M\,}}^{0}{\,\mathrm{\,L\,}}^{2}{\,\mathrm{\,T\,}}^{-2}\right]=\left[{\,\mathrm{\,M\,}}^{0}{\,\mathrm{\,L\,}}^{2}{\,\mathrm{\,T\,}}^{-2}\right]``
`` \therefore \,\mathrm{\,LHS\,}=\,\mathrm{\,RHS\,}`` (b) The gravitational field at the point (x, y) is given by `` {\stackrel{\to }{\,\mathrm{\,E\,}}}_{\left(x,y\right)}=-20\left(\frac{\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\stackrel{‸}{i}-\left(\frac{20\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\stackrel{‸}{j}``. (c) `` \stackrel{\to }{\,\mathrm{\,F\,}}=\stackrel{\to }{\,\mathrm{\,E\,}}m``
`` =0.5\,\mathrm{\,kg\,}\left[-\left(\frac{20\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\stackrel{‸}{i}-\left(\frac{20\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\stackrel{‸}{j}\right]``
`` =-\left(10\,\mathrm{\,N\,}\right)\stackrel{‸}{i}-\left(10\,\mathrm{\,N\,}\right)\stackrel{‸}{j}``
`` \therefore \left|\stackrel{\to }{\,\mathrm{\,F\,}}\right|=\sqrt{\left(100\right)+\left(100\right)}``
`` =10\sqrt{2}\,\mathrm{\,N\,}``
Page No 227:
- #20-aShow that the equation is dimensionally correct.Ans : `` V=\left(\frac{20\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\left(x+y\right)``
`` \left[\frac{\,\mathrm{\,GM\,}}{\,\mathrm{\,R\,}}\right]=\left[\frac{{\,\mathrm{\,MLT\,}}^{-2}}{\,\mathrm{\,M\,}}\right]\left[\,\mathrm{\,L\,}\right]``
`` \Rightarrow \left[\frac{{\,\mathrm{\,M\,}}^{-1}{\,\mathrm{\,L\,}}^{3}{\,\mathrm{\,T\,}}^{-2}{\,\mathrm{\,M\,}}^{1}}{\,\mathrm{\,L\,}}\right]=\left[\frac{{\,\mathrm{\,ML\,}}^{2}{\,\mathrm{\,T\,}}^{-2}}{\,\mathrm{\,M\,}}\right]``
`` \Rightarrow \left[{\,\mathrm{\,M\,}}^{0}{\,\mathrm{\,L\,}}^{2}{\,\mathrm{\,T\,}}^{-2}\right]=\left[{\,\mathrm{\,M\,}}^{0}{\,\mathrm{\,L\,}}^{2}{\,\mathrm{\,T\,}}^{-2}\right]``
`` \therefore \,\mathrm{\,LHS\,}=\,\mathrm{\,RHS\,}``
- #20-bFind the gravitational field at the point (x, y). Leave your answer in terms of the unit vectors
i→, j→, k→.Ans : The gravitational field at the point (x, y) is given by `` {\stackrel{\to }{\,\mathrm{\,E\,}}}_{\left(x,y\right)}=-20\left(\frac{\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\stackrel{‸}{i}-\left(\frac{20\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\stackrel{‸}{j}``.
- #20-cCalculate the magnitude of the gravitational force on a particle of mass 500 g placed at the origin.Ans : `` \stackrel{\to }{\,\mathrm{\,F\,}}=\stackrel{\to }{\,\mathrm{\,E\,}}m``
`` =0.5\,\mathrm{\,kg\,}\left[-\left(\frac{20\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\stackrel{‸}{i}-\left(\frac{20\,\mathrm{\,N\,}}{\,\mathrm{\,kg\,}}\right)\stackrel{‸}{j}\right]``
`` =-\left(10\,\mathrm{\,N\,}\right)\stackrel{‸}{i}-\left(10\,\mathrm{\,N\,}\right)\stackrel{‸}{j}``
`` \therefore \left|\stackrel{\to }{\,\mathrm{\,F\,}}\right|=\sqrt{\left(100\right)+\left(100\right)}``
`` =10\sqrt{2}\,\mathrm{\,N\,}``
Page No 227: