NEET-XII-Physics

10: Rotational Mechanics

with Solutions - page 2
Qstn# ii-8 Prvs-QstnNext-Qstn
  • #8
    Let
    →Fbe a force acting on a particle having position vector
    →r. Let
    →Γbe the torque of this force about the origin, then
    (a)
    r→.Γ→=0 and F→.Γ→=0
    (b)
    r→.Γ→=0 but F→.Γ→≠0
    (c)
    r→.Γ→≠0 but F→.Γ→=0
    (d)
    r→.Γ→≠0 and F→.Γ→≠0
    digAnsr:   a
    Ans : (a) `` \stackrel{\to }{r}.\stackrel{\to }{\,\mathrm{\,\Gamma \,}}=0\,\mathrm{\,and\,}\stackrel{\to }{F}.\stackrel{\to }{\,\mathrm{\,\Gamma \,}}=0``
    We have:
    `` \stackrel{\to }{\tau }=\stackrel{\to }{r}\times \stackrel{\to }{F}``
    Thus, `` \stackrel{\to }{\,\mathrm{\,\tau \,}}`` is perpendicular to `` \stackrel{\to }{r}`` and `` \stackrel{\to }{F}``.
    Therefore, we have:
    `` \stackrel{\to }{r}.\stackrel{\to }{\,\mathrm{\,\tau \,}}=0\,\mathrm{\,and\,}\stackrel{\to }{F}.\stackrel{\to }{\,\mathrm{\,\tau \,}}=0``
    Page No 193: