NEET-XII-Physics
08: Work and Energy
- #2Two springs A and B(kA = 2kB) are stretched by applying forces of equal magnitudes a the four ends. If the energy stored in A is E, that in B isA
(a) E/2
(b) 2E
(c) E
(d) E/4digAnsr: bAns : (b) 2E
Let xA and xB be the extensions produced in springs A and B, respectively.
Restoring force on spring A, `` F={k}_{\,\mathrm{\,A\,}}{x}_{\,\mathrm{\,A\,}}`` ...(i)
Restoring force on spring B, `` F={k}_{\,\mathrm{\,B\,}}{x}_{\,\mathrm{\,B\,}}`` ...(ii)
From (i) and (ii), we get:
`` {k}_{\,\mathrm{\,A\,}}{x}_{\,\mathrm{\,A\,}}={k}_{\,\mathrm{\,B\,}}{x}_{\,\mathrm{\,B\,}}``
It is given that kA = 2kB
`` \therefore {x}_{\,\mathrm{\,B\,}}=2{x}_{\,\mathrm{\,A\,}}``
Energy stored in spring A:
`` E=\frac{1}{2}{k}_{\,\mathrm{\,A\,}}{{x}_{\,\mathrm{\,A\,}}}^{2}`` ...(iii)
Energy stored in spring B:
`` E\text{'}=\frac{1}{2}{k}_{\,\mathrm{\,B\,}}{{x}_{\,\mathrm{\,B\,}}}^{2}=\frac{1}{2}\left(\frac{{k}_{\,\mathrm{\,A\,}}}{2}\right)(2{x}_{\,\mathrm{\,A\,}}{)}^{2}``
`` \therefore E\text{'}=2\times \left(\frac{1}{2}{k}_{\,\mathrm{\,A\,}}{{x}_{\,\mathrm{\,A\,}}}^{2}\right)=2E[\,\mathrm{\,From\,}(\,\mathrm{\,iii\,}\left)\right]``
Page No 131: