NEET-XII-Physics

07: Circular Motion

with Solutions - page 7
Qstn# iv-27-a Prvs-QstnNext-Qstn
  • #27-a
    the normal force by the wall on the block, (b) the frictional force by wall and (c) the tangential acceleration of the block. (d) Integrate the tangential acceleration
    dvdt=vdvdsto obtain the speed of the block after one revolution. (b) the frictional force by wall and (c) the tangential acceleration of the block. (d) Integrate the tangential acceleration
    dvdt=vdvdsto obtain the speed of the block after one revolution.
    Ans : Normal reaction by the wall on the block = N = `` \frac{m{v}^{2}}{R}`` (b) Force of frictional by the wall = `` \mu N=\frac{\mu m{v}^{2}}{R}`` (c) Let at be the tangential acceleration of the block.
    From figure, we get:
    `` -\frac{\mu m{v}^{2}}{R}=m{a}_{t}``
    `` \Rightarrow {a}_{t}=-\frac{\mu {v}^{2}}{R}`` (d) `` \,\mathrm{\,On \,}\,\mathrm{\,using \,}a=\frac{dv}{dt}=v\frac{dv}{ds},\,\mathrm{\,we \,}\,\mathrm{\,get \,}:``
    `` v\frac{dv}{ds}=\frac{\mu {v}^{2}}{R}``
    `` \Rightarrow ds=-\frac{R}{\mu }\frac{dv}{v}``
    `` \,\mathrm{\,Integrating \,}\,\mathrm{\,both \,}\,\mathrm{\,side \,},\,\mathrm{\,we \,}\,\mathrm{\,get \,}:``
    `` s=-\frac{R}{\mu }\,\mathrm{\,In \,}v+c``
    `` \,\mathrm{\,At \,},s=0,v={v}_{0}``
    `` So,c=\frac{R}{\mu }\,\mathrm{\,In \,}{v}_{0}``
    `` \Rightarrow s=-\frac{R}{\mu }\,\mathrm{\,In \,}\frac{v}{{v}_{0}}``
    `` \Rightarrow \frac{v}{{v}_{0}}={e}^{\mathit{-}\frac{\mu s}{R}}``
    `` \mathit{\Rightarrow }v={\,\mathrm{\,v \,}}_{0}{e}^{\mathit{-}\frac{\mathit{\mu s}}{R}}``
    `` \,\mathrm{\,For \,}\,\mathrm{\,one \,}\,\mathrm{\,rotation \,},\,\mathrm{\,we \,}\,\mathrm{\,have \,}:``
    `` s=2\pi r``
    `` \therefore v={v}_{0}{e}^{-2\pi \mu }``
    `` ``
    `` ``
    Page No 116: (b) Force of frictional by the wall = `` \mu N=\frac{\mu m{v}^{2}}{R}`` (c) Let at be the tangential acceleration of the block.
    From figure, we get:
    `` -\frac{\mu m{v}^{2}}{R}=m{a}_{t}``
    `` \Rightarrow {a}_{t}=-\frac{\mu {v}^{2}}{R}`` (d) `` \,\mathrm{\,On \,}\,\mathrm{\,using \,}a=\frac{dv}{dt}=v\frac{dv}{ds},\,\mathrm{\,we \,}\,\mathrm{\,get \,}:``
    `` v\frac{dv}{ds}=\frac{\mu {v}^{2}}{R}``
    `` \Rightarrow ds=-\frac{R}{\mu }\frac{dv}{v}``
    `` \,\mathrm{\,Integrating \,}\,\mathrm{\,both \,}\,\mathrm{\,side \,},\,\mathrm{\,we \,}\,\mathrm{\,get \,}:``
    `` s=-\frac{R}{\mu }\,\mathrm{\,In \,}v+c``
    `` \,\mathrm{\,At \,},s=0,v={v}_{0}``
    `` So,c=\frac{R}{\mu }\,\mathrm{\,In \,}{v}_{0}``
    `` \Rightarrow s=-\frac{R}{\mu }\,\mathrm{\,In \,}\frac{v}{{v}_{0}}``
    `` \Rightarrow \frac{v}{{v}_{0}}={e}^{\mathit{-}\frac{\mu s}{R}}``
    `` \mathit{\Rightarrow }v={\,\mathrm{\,v \,}}_{0}{e}^{\mathit{-}\frac{\mathit{\mu s}}{R}}``
    `` \,\mathrm{\,For \,}\,\mathrm{\,one \,}\,\mathrm{\,rotation \,},\,\mathrm{\,we \,}\,\mathrm{\,have \,}:``
    `` s=2\pi r``
    `` \therefore v={v}_{0}{e}^{-2\pi \mu }``
    `` ``
    `` ``
    Page No 116:
  • #27-b
    the frictional force by wall and
    Ans : Force of frictional by the wall = `` \mu N=\frac{\mu m{v}^{2}}{R}``
  • #27-c
    the tangential acceleration of the block.
    Ans : Let at be the tangential acceleration of the block.
    From figure, we get:
    `` -\frac{\mu m{v}^{2}}{R}=m{a}_{t}``
    `` \Rightarrow {a}_{t}=-\frac{\mu {v}^{2}}{R}``
  • #27-d
    Integrate the tangential acceleration
    dvdt=vdvdsto obtain the speed of the block after one revolution.
    Ans : `` \,\mathrm{\,On \,}\,\mathrm{\,using \,}a=\frac{dv}{dt}=v\frac{dv}{ds},\,\mathrm{\,we \,}\,\mathrm{\,get \,}:``
    `` v\frac{dv}{ds}=\frac{\mu {v}^{2}}{R}``
    `` \Rightarrow ds=-\frac{R}{\mu }\frac{dv}{v}``
    `` \,\mathrm{\,Integrating \,}\,\mathrm{\,both \,}\,\mathrm{\,side \,},\,\mathrm{\,we \,}\,\mathrm{\,get \,}:``
    `` s=-\frac{R}{\mu }\,\mathrm{\,In \,}v+c``
    `` \,\mathrm{\,At \,},s=0,v={v}_{0}``
    `` So,c=\frac{R}{\mu }\,\mathrm{\,In \,}{v}_{0}``
    `` \Rightarrow s=-\frac{R}{\mu }\,\mathrm{\,In \,}\frac{v}{{v}_{0}}``
    `` \Rightarrow \frac{v}{{v}_{0}}={e}^{\mathit{-}\frac{\mu s}{R}}``
    `` \mathit{\Rightarrow }v={\,\mathrm{\,v \,}}_{0}{e}^{\mathit{-}\frac{\mathit{\mu s}}{R}}``
    `` \,\mathrm{\,For \,}\,\mathrm{\,one \,}\,\mathrm{\,rotation \,},\,\mathrm{\,we \,}\,\mathrm{\,have \,}:``
    `` s=2\pi r``
    `` \therefore v={v}_{0}{e}^{-2\pi \mu }``
    `` ``
    `` ``
    Page No 116: